KKG PUBLICATIONS
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • https://evolua.ispcaala.com/
  • http://pewarta.org/styles/
  • https://perhepi.org/
  • https://portal-indonesia.id/
  • https://nursahid.com/
  • https://singmanfaat.jabarprov.go.id/
  • https://sindika.co.id/
  • https://cirebonkerja.id/
  • https://klikoku.id/
  • https://iii.cemacyc.org/minicursos/
  • https://iv.cemacyc.org/creditos/
  • https://iv.cemacyc.org/
  • https://www.winteriorsdecor.com/
  • https://e-journal.polnes.ac.id/
  • https://dap.sumbarprov.go.id/
  • https://dinkes.sarolangunkab.go.id/
  • https://bappeda.sarolangunkab.go.id/
  • https://sipena.rsjrw.id/
  • https://slims.assunnah.ac.id/
  • https://ojs.as-pub.com/
  • https://techniumscience.com/
  • https://siakad.stikesbpi.ac.id/
  • https://bbwpublisher.com/
  • https://earsip.stikesbaptis.ac.id/
  • https://jdih.sukabumikab.go.id/v1/
  • https://rakornasaptikom2024.methodist.ac.id/
  • https://ojs.sttkingdom.ac.id/
  • https://eximiajournal.com/

Continuous Particle Separation Using Inertial Focusing in a Dean Flow Driven Microchannel



Volume 2, Issue 2
Sonme, Samir Jaber, Levent Trabzon

Published online: 24 April 2016
Article Views: 32

Abstract

This paper illustrates the separation of particles in a spiral microchannel based on inertial forces and differential migration. This passive microfluidic device can deliver the separation of particles based on their sizes. It is made of four loops with an initial radius of curvature of 2 cm, a channel width of 500 μm, and a height of 50 μm. Systematic analysis, the manufacturing process, simulations, and the methodology of this microfluidic system are presented here alongside the experimentation. In order to realize the process theoretically, computer simulations using Comsol Multiphysics 5.0 were done, describing the laminar flow of fluid streaming across the spiral microchannel and the tracing of particles within the flow. The straightforwardness, material, and productivity of this design make it a perfect model for lab-on-a-chip (LOC) or micro-total analysis systems (μTAS), as it allows for continuous separation applications.

Reference

    1. M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera M. C., Miller, ….. and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” New England Journal of Medicine, vol. 351, no. 8, pp. 781-791, 2004. https://dx.doi.org/10.1056/NEJMoa040766 PMid:15317891
    2. H. W. Hou, M. E. Warkiani, B. L. Khoo, Z. R. Li, R. A. Soo, D. S. W. Tan, … and C. T. Lim, “Isolation and retrieval of circulating tumor cells using centrifugal forces,” Scientific Reports, vol. 3, pp. 1-8, 2013. https://dx.doi.org/10.1038/srep01259 PMid:23405273 PMCid:PMC3569917
    3. J. C. Giddings, “Field-flow fractionation: Analysis of macromolecular, colloidal, and particulate materials,” Science, vol. 260, no. 5113, pp. 1456-1465, 1993. https://dx.doi.org/10.1126/science.8502990 PMid:8502990
    4. M. Yamada, M. Nakashima and M. Seki, “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Analytical Chemistry, vol. 76, no. 18, pp. 5465-5471, 2004. https://dx.doi.org/10.1021/ac049863r PMid:15362908
    5. E. Chmela, R. Tijssen, M. T. Blom, H. J. Gardeniers and A. Van Den Berg, “A chip system for size separation of macromolecules and particles by hydrodynamic chromatography,” Analytical Chemistry, vol. 74, no. 14, pp. 3470-3475, 2002. https://dx.doi.org/10.1021/ac0256078 PMid:12139056
    6. X. Xu, K. K. Caswell, E. Tucker, S. Kabisatpathy, K. L. Brodhacker and W. A. Scrivens, “Size and shape separation of gold nanoparticles with preparative gel electrophoresis,” Journal of Chromatography A, vol. 1167, no. 1, pp. 35-41, 2007. https://dx.doi.org/10.1016/j.chroma.2007.07.056 PMid:17804004
    7. M. Dürr, J. Kentsch, T. Müller, T. Schnelle and M. Stelzle, “Microdevices for manipulation and accumulation of micro‐and nanoparticles by dielectrophoresis,” Electrophoresis, vol. 24, no. 4, pp. 722-731, 2003. https://dx.doi.org/10.1002/elps.200390087 PMid:12601744
    8. C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth and W. Menz, “Separation of blood in microchannel bends,” In Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, U.S, 2004. https://dx.doi.org/10.1117/12.522780 https://dx.doi.org/10.1109/iembs.2004.1403754
    9. D. Di Carlo, D. Irimia, R. G. Tompkins and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” In Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18892-18897, 2007. https://dx.doi.org/10.1073/pnas.0704958104 PMid:18025477 PMCid:PMC2141878
    10. N. Pamme, “Continuous flow separations in microfluidic devices,” Lab on a Chip, vol. 7, no. 12, pp. 1644-1659, 2007. https://dx.doi.org/10.1039/b712784g PMid:18030382
    11. I. Gregoratto, C. J. McNeil and M. W. Reeks, “Micro-devices for rapid continuous separation of suspensions for use in micrototal-analysis-systems (μTAS),” In MOEMS-MEMS 2007 Micro and Nanofabrication. International Society for Optics and Photonics, California, CA, U.S, 2007. https://dx.doi.org/10.1117/12.705095
    12. D. Di Carlo, J. F. Edd, D. Irimia, R. G. Tompkins and M. Toner, “Equilibrium separation and filtration of particles using differential inertial focusing,” Analytical Chemistry, vol. 80, no. 6, pp. 2204-2211, 2008. https://dx.doi.org/10.1021/ac702283m PMid:18275222
    13. P. Patil, T. Kumeria, D. Losic and M. Kurkuri, “Isolation of circulating tumour cells by physical means in a microfluidic device: A review,” RSC Advances, vol. 5, no. 109, pp. 89745-89762, 2015. https://dx.doi.org/10.1039/C5RA16489C
    14. A. A. S. Bhagat, S. S. Kuntaegowdanahalli and I. Papautsky, “Continuous particle separation in spiral microchannels using dean flows and differential migration,” Lab on a Chip, vol. 8, no. 11, pp. 1906-1914, 2008. https://dx.doi.org/10.1039/b807107a PMid:18941692
    15. E. S. Asmolov, “The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number,” Journal of Fluid Mechanics, vol. 381, pp. 63-87, 1999. https://dx.doi.org/10.1017/S0022112098003474
    16. J. P. Beech and J. O. Tegenfeldt, “Tuneable separation in elastomeric microfluidics devices,” Lab on a Chip, vol. 8, no. 5, 657-659, 2008. https://dx.doi.org/10.1039/b719449h PMid:18432332
    17. S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar and I. Papautsky, “Inertial microfluidics for continuous particle separation in spiral microchannels,” Lab on a Chip, vol. 9, no. 20, pp. 2973-2980, 2009. https://dx.doi.org/10.1039/b908271a PMid:19789752
    18. M. E. Warkiani, A. K. P. Tay, G. Guan and J. Han, “Membrane-less microfiltration using inertial microfluidics,” Scientific Reports, vol. 5, pp. 1-10, 2015. https://dx.doi.org/10.1038/srep11018 PMid:26154774 PMCid:PMC4495597
    19. L. Wu, G. Guan, H. W. Hou, A. A. S. Bhagat and J. Han, “Separation of leukocytes from blood using spiral channel with trapezoid cross-section,” Analytical Chemistry, vol. 84, no. 21, pp. 9324-9331, 2012. https://dx.doi.org/10.1021/ac302085y PMid:23025404
    20. G. Guan, L. Wu, A. A. Bhagat, Z. Li, P. C. Chen, S. Chao, … and J. Han, “Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation,” Scientific reports, vol. 3, pp. 1-9, 2013. https://dx.doi.org/10.1038/srep01475 PMid:23502529 PMCid:PMC3600595
    21. M. E. Warkiani, B. L. Khoo, L. Wu, A. K. P. Tay, A. A. S. Bhagat, J. Han and C. T. Lim, “Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics,” Nature Protocols, vol. 11, no. 1, pp. 134-148, 2016. https://dx.doi.org/10.1038/nprot.2016.003 PMid:26678083

To Cite this article

U. Sonmez, S. Jaber and L. Trabzon, “Continuous particle separation using inertial focusing in a dean flow driven microchannel,” International Journal of Technology and Engineering Studies, vol. 2, no. 2, pp. 53-59, 2016.



© 2020. KKG Publications
Calle Alarcon 66, Sant Adrian De Besos 08930, Barcelona Spain | 00 34 610 911 348
About Us | Contact Us | Feedback

Search