KKG PUBLICATIONS
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • https://evolua.ispcaala.com/
  • http://pewarta.org/styles/
  • https://perhepi.org/
  • https://portal-indonesia.id/
  • https://nursahid.com/
  • https://singmanfaat.jabarprov.go.id/
  • https://sindika.co.id/
  • https://cirebonkerja.id/
  • https://klikoku.id/
  • https://iii.cemacyc.org/minicursos/
  • https://iv.cemacyc.org/creditos/
  • https://iv.cemacyc.org/
  • https://www.winteriorsdecor.com/
  • https://e-journal.polnes.ac.id/
  • https://dap.sumbarprov.go.id/
  • https://dinkes.sarolangunkab.go.id/
  • https://bappeda.sarolangunkab.go.id/
  • https://sipena.rsjrw.id/
  • https://slims.assunnah.ac.id/
  • https://ojs.as-pub.com/
  • https://techniumscience.com/
  • https://siakad.stikesbpi.ac.id/
  • https://bbwpublisher.com/
  • https://earsip.stikesbaptis.ac.id/
  • https://jdih.sukabumikab.go.id/v1/
  • https://rakornasaptikom2024.methodist.ac.id/
  • https://ojs.sttkingdom.ac.id/
  • https://eximiajournal.com/

The Effect of Incident Angle and Filling Factor on Dispersion Properties of Different Structures of One-Dimensional Photonic Crystals



Volume 3, Issue 4
OUARDA BARKAT, BADREDDINE MAMRI

Published online: 17 August 2017

Article Views: 50

Abstract

This study investigates the effect of filling factor and incident angle on the dispersion curve of (1D-PC) structures. This paper applied the transfer matrix method in conjunction with the Bloch theorem to study the dispersion properties of one-dimensional photonic crystals made by TiO2/ GaAs and TiO2/ MgF2. The effects of filling factor and incident angle on the photonic gap map are investigated for both TE and TM polarizations. It is found that the location, number, and width of the photonic gap are affected significantly by the filling factor and incident angle of the structure. Results are compared with published data and are found to be in good agreement. These approaches can allow for better characterization of multilayer metamaterial structures.

 

Reference

  1. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky and S. V. Gaponenko, “All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control,” Journal of Lightwave Technology, vol. 17, no. 11, pp. 2018-2024, 1999.
  2. Z. Wang, D. Liu, “A few points on omnidirectional band gaps in one- dimensional photonic crystals,” Applied Physics B: Lasers and Optics, vol. 86, no. 3, pp. 473-476, 2007.
  3.  R. Gonzalo, P. De Maagt and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonicbandgap substrates,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2131-2138, 1999.
  4. G. Sharma, S. Kumar, S. Prasad and V. Singh, “Theoretical modelling of one dimensional photonic crystal based optical demultiplexer,” Journal of Modern Optics, vol. 63, no. 10, pp. 995-999, 2016.
  5. T. Karpisz, B. Salski, R. Buczynski, P. Kopyt and A. Pacewicz, “Computationally-efficient FDTD modeling of supercontinuum generation in photonic crystal fibers,” Optical and Quantum Electronics, vol. 48, no. 3, pp. 1-11, 2016.
  6. M. N. Armenise, C. E. Campanella, C. Ciminelli, F. Dell’Olio and V. M. Passaro, “Phononic and photonic band gap structures: Modelling and applications,” Physics Procedia, vol. 3, no. 1, pp. 357-364, 2010.
  7.  L. Rayleigh, “XXVI. On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 26. no. 160, pp. 256-265, 1888.
  8.  V. P. Bykov, “Spontaneous emission in a periodic structure,” Soviet Journal of Experimental and Theoretical Physics, vol. 35, pp. 269-273, 1972.
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, pp. 2059-2062, 1987.
  10.  S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, pp. 2486-2489, 1987.
  11. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos and E. L. Thomas, “A dielectric omnidirectional reflector,” Science, vol. 282, no. 5394, pp. 1679-1682, 1998.
  12. J. N. Winn, Y. Fink, S. Fan and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal.” Optics letters, vol. 23, no. 20, pp. 1573-1575, 1998.
  13.  X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu and J. Zi, “Enlargement of omnidirectional total reflection frequency range in onedimensional photonic crystals by using photonic heterostructures,” Applied Physics Letters, vol. 80, no. 23, pp. 4291-4293, 2002.
  14.  K. M.Chen, A. W. Sparks, H. C. Luan, D. R. Lim, K. wada, and L. C. Kimerling, “SiO2/TiO2 omnidirectional reflector and microcavity resonator via the Sol-Gel method,” Applied Physics Letters, vol. 75, no. 24, pp. 3805-3807, 1999.
  15.  K. Sakoda, Optical Properties of Photonic Crystals. New York, NY: Springer Berlin Heidlberg, 2005.
  16.  F. Scotognella, “Four-material one dimensional photonic crystals,” Optical Materials, vol. 34, no. 9, pp. 1610-1613, 2012.
  17. C. J. Wu and Z. H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Progress in Electromagnetics
    Research
    , vol. 103, pp. 169-184, 2010.
  18.  T. A. Tameh, B. M. Isfahani, N. Granpayeh and A. M. Javan, “Analysis and optimization of optical bistability in onedimensional nonlinear photonic crystal with (HL) p (D) q (LH) p and (LH) p (D) q (HL) p structures,” Optik-International Journal for Light and Electron Optics, vol. 121, no. 19, pp. 1729-1734, 2010.
  19.  L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures I. Theory,” Physical Review Journal, vol. 70, no. 5, pp. 1-13, 2004.
  20. K. Busch, G. Von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili and M. Wegener, “Periodic nanostructures for photonics,” Physics Reports, vol. 444, no. 3, pp. 101-202, 2007.
  21. K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Physical Review Letters, vol. 65, no. 25, pp. 3152-3155, 1990.
  22. V. A. Tolmachev, T. S. Perova, J. Ruttle and E. V. Khokhlova, “Design of one-dimensional photonic crystals using combination of band diagram and photonic gap map approaches,” Journal of Applied Physics, vol. 104, no. 3, pp. 1-6, 2008.

To Cite this article

O. Barkat and B. Mamri, “The effect of incident angle and filling factor on dispersion properties of different structures of one-dimensional photonic crystals,” International Journal of Technology and Engineering Studies, vol. 3, no. 4, pp.133-140, 2017.



© 2020. KKG Publications
Calle Alarcon 66, Sant Adrian De Besos 08930, Barcelona Spain | 00 34 610 911 348
About Us | Contact Us | Feedback

Search