KKG PUBLICATIONS
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • https://evolua.ispcaala.com/
  • http://pewarta.org/styles/
  • https://perhepi.org/
  • https://portal-indonesia.id/
  • https://nursahid.com/
  • https://singmanfaat.jabarprov.go.id/
  • https://sindika.co.id/
  • https://cirebonkerja.id/
  • https://klikoku.id/
  • https://iii.cemacyc.org/minicursos/
  • https://iv.cemacyc.org/creditos/
  • https://iv.cemacyc.org/
  • https://www.winteriorsdecor.com/
  • https://e-journal.polnes.ac.id/
  • https://dap.sumbarprov.go.id/
  • https://dinkes.sarolangunkab.go.id/
  • https://bappeda.sarolangunkab.go.id/
  • https://sipena.rsjrw.id/
  • https://slims.assunnah.ac.id/
  • https://ojs.as-pub.com/
  • https://techniumscience.com/

Using of Two Dimensional HAAR Wavelet for Solving of Two Dimensional Nonlinear Fredholm Integral Equation



   Volume 3, Issue 2
MAJID ERFANIAN, ABBAS AKRAMI

Published online:  14 July 2017

Article Views: 38

Abstract

In this work, we used the properties of the two-dimensional Haar wavelet; for this purpose, it is required to define the integral operator and obtain an operational matrix for our integral equation. Also, we used from 2D-Haar wavelet to approximate solutions of nonlinear two-dimensional Fredholm integral equations without solving a linear system. In section error analysis, we apply Banach fixed point theorem, and we proved my integral operator has a unique fixed point. In section four, numerical example, we choose one example, and we have compared my method with the other methods. It has been observed that the approximation solutions are obtained are very suitable. Moreover, the CPU runs times in seconds are presented. Also, we can expand this method to another type of 2D integral equation, such as Volterra or mixed of Volterra and Fredholm.

Reference

  1. M. Erfanian and M. Gachpazan, “A new method for solving of telegraph equation with Haar wavelet,” International Journal of Mathematical and Computational Science, vol. 3, no. 1, pp. 6-10, 2016.
  2. R. T. Lynch and J. J. Reis, “Haar transform image conding,” in Proceedings of the National Telecommunications Conference, Dallas, TX, 1976, pp. 441-443.
  3. Z. Cheng, “Quantum effects of thermal radiation in a Kerr nonlinear blackbody,” Journal of the Optical Society of America B (JOSAB), vol. 19, no. 7, pp. 1692-1705, 2002. https://doi.org/10.1364/JOSAB.19.001692
  4. W. C. Chew, M. S. Tong and B. Hu, “Integral equation methods for electromagnetic and elastic waves,” Synthesis Lectures on Computational Electromagnetics, vol. 3, no. 1, pp. 1-241, 2008. https://doi.org/10.2200/S00102ED1V01Y200807CEM012
  5. Y. Liu and T. Ichiye, “Integral equation theories for predicting water structure around molecules,” Biophysical Chemistry, vol. 78, no. 1, pp. 97-111, 1999. https://doi.org/10.1016/S0301-4622(99)00008-3
  6. K. F. Warnick, Numerical Analysis for Electromagnetic Integral Equations, Norwood, MA: Artech House, 2008.
  7. G. Han and R. Wang, “Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations,” Journal of Computational and Applied Mathematics, vol. 139, no. 1, pp. 49-63, 2002. https://doi.org/10.1016/S0377-0427(01)00390-9
  8. R. J. Hanson and J. L. Phillips, “Numerical solution of two-dimensional integral equations using linear elements,” SIAM Journal on Numerical Analysis, vol. 15, 1, pp. 113-121, 1978. https://doi.org/10.1137/0715007
  9. A. Alipanah and S. Esmaeili, “Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function,” Journal of Computational and Applied Mathematics, vol. 235, no. 18, pp. 5342-5347, 2011. https://doi.org/10.1016/j.cam.2009.11.053
  10.  F. Mirzaee and S. Piroozfar, “Numerical solution of the linear two-dimensional Fredholm integral equations of the second kind via two-dimensional triangular orthogonal functions,” Journal of King Saud University-Science, vol. 22, no. 4, pp. 185-193, 2010. https://doi.org/10.1016/j.jksus.2010.04.007
  11. I. Aziz and F. Khan, “A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations,” Journal of Computational and Applied Mathematics, vol. 272, pp. 70-80, 2014. https://doi.org/10.1016/j.cam.2014.04.027
  12. H. Guoqiang and W. Jiong, “Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations,” Journal of Computational and Applied Mathematics, vol. 134, no. 1, pp. 259-268, 2001. https://doi.org/10.1016/S0377-0427(00)00553-7
  13. P. Assari, H. Adibi and M. Dehghan, “A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis,” Journal of Computational and Applied Mathematics, vol. 239, pp. 72-92, 2013. https://doi.org/10.1016/j.cam.2012.09.010
  14. W. J. Xie and F. R. Lin, “A fast numerical solution method for two dimensional Fredholm integral equations of the second kind,” Applied Numerical Mathematics, vol. 59, no. 7, pp. 1709-1719, 2009. https://doi.org/10.1016/j.apnum.2009.01.009
  15. A. Tari and S. Shahmorad, “A computational method for solving two-dimensional linear Fredholm integral equations of the second kind,” The ANZIAM Journal, vol. 49, no. 04, pp. 543-549, 2008. https://doi.org/10.1017/S1446181108000126
  16. S. Bazm and E. Babolian, “Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using Gauss product quadrature rules,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 3, pp. 1215-1223, 2012. https://doi.org/10.1016/j.cnsns.2011.08.017
  17. A. Tari, M. Rahimi, S. Shahmorad and F. Talati, “Solving a class of two-dimensional linear and nonlinear Volterra interal equations by the differential transform method”, Journal of Computational and Applied Mathematics, vol. 228, no. 1, pp. 70-76, 2009. https://doi.org/10.1016/j.cam.2008.08.038
  18. F. Mirzaee and E. Hadadiyan, “Application of two-dimensional hat functions for solving space-time integral equations,” Journal of Applied Mathematics and Computing, vol. 51, no. 1-2, pp. 453-486, 2016. https://doi.org/10.1007/s12190-015-0915-5
  19. E. Tohidi, “Taylor matrix method for solving linear two-dimensional Fredholm integral equations with Piecewise Intervals,” Computational and Applied Mathematics, vol. 34, no. 3, pp. 1117-1130, 2015. https://doi.org/10.1007/s40314-014-0166-3
  20. Z. J. Behbahani and M. Roodaki, “Two-dimensional Chebyshev hybrid functions and their applications to integral equations,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 4, no. 2, pp. 134-141, 2015. https://doi.org/10.1016/j.bjbas.2015.05.005
  21. I. G. Graham, “Collocation methods for two dimensional weakly singular integral equations,” The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, vol. 22, no. 04, pp. 456-473, 1987. https://doi.org/10.1017/S0334270000002800
  22. S. Nemati, P. M. Lima and Y. Ordokhani, “Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials,” Journal of Computational and Applied Mathematics, vol. 242, pp. 53-69, 2013. https://doi.org/10.1016/j.cam.2012.10.021
  23. M. Erfanian, M. Gachpazan and S. Kosari, “A new method for solving of Darboux problem with Haar Wavelet,” SeMA Journal, pp. 1-13, 2016.
  24. A. Fazli, T. Allahviranloo and S. Javadi, “Numerical solution of nonlinear two-dimensional Volterra integral equation of the second kind in the reproducing kernel space,” Mathematical Sciences, vol. 11, no. 2, pp. 139-144, 2017. https://doi.org/10.1007/s40096-017-0219-z
  25. H. Brunner and J. P. Kauthen, “The numerical solution of two-dimensional Volterra integral equations by collocation and iterated collocation,” IMA Journal of Numerical Analysis, vol. 9, no. 1, pp. 47-59, 1989. https://doi.org/10.1093/imanum/9.1.47
  26. M. S. Dahaghin and S. Eskandari, “Solving two-dimensional Volterra-Fredholm integral equations of the second kind by using Bernstein polynomials,” Applied Mathematics-A Journal of Chinese Universities, vol. 32, no. 1, pp. 68-78, 2017. https://doi.org/10.1007/s11766-017-3352-4
  27. A. Tari and S. M. Torabi, “Numerical solution of two-dimensional integral equations of the first kind by multi-step methods,” Computational Methods for Differential Equations, vol. 4, no. 2, pp. 128-138, 2016.
  28. A. Babaaghaie and K. Maleknejad, “Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar wavelet,” Journal of Computational and Applied Mathematics, vol. 317, pp. 643-651, 2017. https://doi.org/10.1016/j.cam.2016.12.012
  29. J. J. Reis, R. T. Lynch and J. Butman, “Adaptive Haar transform video bandwidth reduction system for RPVs,” in Proceedings of Annual Meeting of Society of Photo-Optic Institute of Engineering (SPIE), San Dieago, CA, 1976, pp. 24-35.
  30. P. Wojtaszczyk, A Mathematical Introduction to Wavelets. Cambridge, CA: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511623790
  31. I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909-996, 1988. https://doi.org/10.1002/cpa.3160410705
  32. D. R. Larson, “Unitary systems and wavelet sets,” Wavelet Analysis and Applications, pp. 143-171, 2007. https://doi.org/10.1007/978-3-7643-7778-6_14
  33. M. Erfanian, M. Gachpazan and H. Beiglo, “Rationalized Haar wavelet bases to approximate solution of nonlinear Fredholm integral equations with error analysis,” Applied Mathematics and Computation, vol. 265, pp. 304-312, 2015. https://doi.org/10.1016/j.amc.2015.05.010
  34. M. Erfanian and M. Gachpazan, “Solving mixed FredholmVolterra integral equations by using the operational matrix of RH wavelets,” SeMA Journal, vol. 69, no. 1, pp. 25-36, 2015. https://doi.org/10.1007/s40324-015-0034-0
  35. M. Erfanian, M. Gachpazan and H. Beiglo, “A new sequential approach for solving the integro-differential equation via Haar wavelet bases,” Computational Mathematics and Mathematical Physics, vol. 57, no. 2, pp. 297-305, 2017. https://doi.org/10.1134/S096554251702004X
  36. M. Erfanian, M. Gachpazan and H. Beiglo, “RH wavelet bases to approximate solution of nonlinear Volterra – Fredholm – Hammerstein integral equations with error analysis,” Proceedings of IAM, vol. 4, no. 1, 2015, pp. 70-82.
  37. K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind. Cambridge, CA: Cambridge University Press, 1997.
  38. M. Heydari, Z. Avazzadeh, H. Navabpour and G. Loghmani, “Numerical solution of Fredholm integral equations of the second kind by using integral mean value theorem,” Applied Mathematical Modelling, vol. 35, no. 5, 2374-2383, 2011. https://doi.org/10.1016/j.apm.2010.11.056
  39. E. Babolian, S. Bazm and P. Lima, “Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1164-1175, 2011. https://doi.org/10.1016/j.cnsns.2010.05.029

To Cite this article

M. Erfanian and A. Akrami, “Using of two dimensional HAAR wavelet for solving of two dimensional nonlinear fredholm integral equation,” International Journal of Applied and Physical Sciences, vol. 3, no. 2, pp. 55-60, 2017.



© 2020. KKG Publications
Calle Alarcon 66, Sant Adrian De Besos 08930, Barcelona Spain | 00 34 610 911 348
About Us | Contact Us | Feedback

Search