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Abstract. In this work, we used the properties of the two-dimensional Haar wavelet; for this purpose, it is required to
define the integral operator and obtain an operational matrix for our integral equation. Also, we used from 2D-Haar wavelet
to approximate solutions of nonlinear two-dimensional Fredholm integral equations without solving a linear system. In
section error analysis, we apply Banach fixed point theorem, and we proved my integral operator has a unique fixed point.
In section four, numerical example, we choose one example, and we have compared my method with the other methods.
It has been observed that the approximation solutions are obtained are very suitable. Moreover, the CPU runs times in
seconds are presented. Also, we can expand this method to another type of 2D integral equation, such as Volterra or mixed
of Volterra and Fredholm.

c©2017 KKG Publications. All rights reserved.

INTRODUCTION
Many types of problems in engineering science such

as telegraph equations [1], electrical engineering [2], electro-
chemical process, heat and mass transfer [3] electromagnetic
and electrodynamic [4] molecular physics, fluid mechanic, Con-
solidation equation, acoustic, chemical [5], seepage diffusion
equation, population [6], can be change to 2D integral equation.
A lot of work has been done in field of two-dimensional integral
equations, for instance, G. Han, in [7], [8] was Solved 2D
Fredholm integral equations by the Galerkin iterative method
and linear Elements, for the first time. In [9] with using Gaus-
sian radial basis function, and in [10] solving by triangular
orthogonal functions (2D-TFs). Also in [11] using of HAAR
wavelet. In [12] method and in [13] from meshless method
solving this equation. Legendre polynomial and interpolation
methods [14], [15], differential transform and Gauss product
quadrature rule method, hat functions and with Piecewise Inter-
vals [16, 17, 18, 19, 20] with Chebyshev hybrid functions solved
two-dimensional integral equations and in [21] Graham, applied
Collocation method for two-dimensional weakly singular inte-
gral equations. Also, there exist some work for approximate
of two-dimensional Volterra integral equations such as in [22,
23, 24] for 2D nonlinear Volterra, and in [25] for linear Volterra
integral, furthermore, in [26] using of Bernstein polynomials
method for solving two-dimensional Volterra-Fredholm integral
equations, also in [27] solved 2D integral equations of the first
kind by multi-step methods.

In [28], with Haar wavelet obtained Numerical solutions of
nonlinear two-dimensional partial Volterra integro-differential
equations.

LITERATURE REVIEW
In this work, we using of 2D Rational Haar wavelet

method for solving 2D Fredholm integral equation. Haar
wavelets one of the simplest wavelets among various types of
wavelets, and the RH functions are family on [0, 1] of only
three values +1 , -1 and 0. That Alfred Haar in his PhD thesis
in 1910 was presented of first example of a Haar function. In
1981 Jean Morlet, explanation of concerning wavelets and in
1984 Alex Grossman invented the term wavelet. Yves Meyer
introduce Meyer wavelet in 1985 [29], [30]. Daubechies in [31]
applied wavelet in mathematics, signal processing, and numer-
ical analysis in 1988. A lot of types of wavelets are existed
such as Haar, Legendre, Legendre multiwavelets, Chebyshev,
Coiflet, Mathieu, Poisson, Shannon, Spline, and Stromberg
wavelet [32]. We applied Haar wavelet in one-dimensional
integral equation, such as in [33] for nonlinear Fredholm inte-
gral equations, in [34] for nonlinear mixed Volterra Fredholm
integral equations, in [35] we extended for numerical solution of
integro-differential equation, and in [36] for nonlinear Volterra
Fredholm Hammerstein integral equations.
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METHODOLOGY
Consider the 2D Fredholm integral equation of below:

v(x, y) = g(x, y) +

∫ 1

0

∫ 1

0

U(x, y, t, s, v(s, t))dsdt. (1)

That v ∈ C([0, 1]2) is an unknown function, f :

[0, 1]2 → R2, and U : [0, 1]4 ×R2 → R2, are a known contin-
uous function, and for Lipschitz function of U, we have
|U(x, y, t, s, v1(s, t))− U(x, y, t, s, v2(s, t))| ≤ L|v1 − v2|,
where L ≥ 0, v1, v2 ∈ R2.

One of the most efficient and effective methods for solv-
ing the equation (1) is using the 2D Haar wavelets basis. We
applied 2D-Haar wavelet to find numerical of solutions. To
achieve this purpose, we define operator T in the Banach space
that are continuous and real valued functions
T : (C([0, 1]2), ||.||∞) → (C([0, 1]2), ||.||∞),

with using this operator, we have

T (v(x, y)) = g(x, y)+

∫ 1

0

∫ 1

0

U(x, y, t, s, v(s, t))dsdt. (2)

Therefore, from assumptions in [37] and the Banach
fixed point theorem in section Error Analysis we proved T, has
a unique fixed point; thus, the integral equation (1) has exactly
one solution.

Rational Haar Functions
Definition 2, 1

The function of RH wavelet on [0,1] is defined as fol-
lows:

H(t) =

{ 1 0<t ≤ 1/2,

−1 1/2<t<1,

0 otherwise
and for all t ∈ [0, 1)

h0(t) = 1.

Also, we can be rewritten the RH function by
hn(t) = H(2pt− q), n = 2p + q

with p = 0, 1, . . . and q = 0, 1, . . . , 2p − 1.

We define h(t) = [h0(t), h1(t), . . . , h(m− 1)(t)]T , and
φ̂m×m =

[
h( 1

2m ), h( 3
2m ), ..., h( 2m−1

2m )
]
.

That m = 2(n + 1) ∈ N, for example, the first eight RH
functions can be written in the matrix form as

φ̂8×8 =



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1



Also for any function two variable we can be expanded
by 2D Haar wavelets functions then we have

v(s, t) =

m∑
i=0

m∑
j=0

aijhij(s, t) = FTM(s, t). (3)

In this equation
hij(s, t) = hi(s)hj(t),

and

aij = 〈hi(s), 〈v(s, t), hj)(t)〉〉. (4)

We can show vectors F and M are below

F = [a0,0, a0, 1, ..., a0,(m−1), a1, 0, ..., a1,(m−1), ...,

a(m−1),0, ..., a(m−1),(m−1))] (5)

and

M(s, t) = [h00, ..., ho(m−1), h10, ..., h1(m−1), ...,

h(m−1)0, ..., h(m−1)(m−1)]
T (s, t), (6)

we also have:∫ 1

0

∫ 1

0
hm,n(x, t)hl,q)(x, t)dxdt

=
∫ 1

0
hm(x)hl(x)dx

∫ 1

0
hn(t)hq(t)dt

=

{
1, l = m,n = q,

0 otherwise
We assume in equation of (1)

U(x, y, t, s, v(s, t)) =

l∑
(i=1)

Ui(x, y)Vi(s, t), (7)

and functions of, Vi (s,t), will be approximated with Haar
wavelets, so we have

φi(s, t)Vi(s, t) =MT (s, t)AiM(s, t), (8)

we assume Qm is an orthogonal projection with interpo-
lation condition, and

φn−1(s, t) = U(x, y, t, s, vn−1(s, t)). (9)

Then by using of RH functions for ψn−1(s, t) we have

Qm(φn−1(s, t)) =

r∑
l=1

Ul(x, y)M
T (s, t)AlM(s, t), (10)

that

Al = [a(l)pq ]m×m′ l = 1, 2, 3, ..., r, (11)

and m = 2n+1 ∈ N, that n ≥ 1

a(l)pq = 2
i+j
2 〈hp(s), 〈φt(s, t), hq(t)〉〉, (12)

with i,j = 0,1,..., where
p = 2j + k k = 0, 1, ..., 2j − 1,
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q = 2i + k′ k′ = 0, 1, ..., 2i − 1.

Thus by using this equations for l=1,2,3,...,r we have

Al = (φ̂−1
m×m)T .Âl

ˆ(φ)
−1

m×m′ (13)

where

Âl = [(â(l))pq]m×m′p, q = 1, 2, ....,m, (14)

as
(âl)pq = φ(

2p− 1

2m
,
2q − 1

2m
). (15)

Thus for the 2D Fredholm integral equation as we have

vi(x, y) = g(x, y) +

∫ 1

0

∫ 1

0

Qm(ψi(s, t))dtds, i = 1, 2, 3...

(16)
Error Analysis

Since we using of 2D Haar wavelets for approximated
of 2D nonlinear Fredholm integral equation, so with the help
of the following theorem convergence and upper bound of the
equation (1) is evaluated.

Lemma 3-1
Let Lipschitz function of U from [0, 1]4 × R2 → R2, and
|U(x, y, t, s, v1(s, t))− (x, y, t, s, v2(s, t))| ≤ L|v1 − v2|,

that L is a Lipschitz constant, then operator T in equation
of (2) has an unique fixed point of v and for all initial point of
v0 we have

‖ v − T i(v0) ‖∞≤‖ T (v0)− v0 ‖∞ ×
∞∑

(j=i)

Lj , (17)

that L <1, and

‖ . ‖∞= sup{|g(s, t)|; (s, t) ∈ [0, 1]×[0, 1], g : [0, 1]2 → R2},
(18)
Proof:

If v1, v2, are two unknown function in C([0, 1]2), for
the 2D Fredholm integral equations then we have
|T (v1(x, y))− T (v2(x, y))| =

|
∫ 1

0

∫ 1

0
U(x, y, t, s, v1(s, t))

−U(x, y, t, s, v2(s, t))dtds|
≤

∫ 1

0

∫ 1

0
|U(x, y, t, s, v1(s, t))

−U(x, y, t, s, v2(s, t))dtds|
≤ L

∫ 1

0

∫ 1

0
|v1(s, t)− v2(s, t)|dtds ≤ L||v1 − v2||∞.

By induction, for the 2D Fredholm integral equation and
every n ∈ N we have
||Tn(v1)− Tn(v2)||∞ ≤ Ln||v1 − v2||∞,

Therefore, the equation of (2) has a unique answer and
(17) verify to the Banach fixed-point theorem.

Theorem 3-1
If we let that φ belong toC([0, 1]2) and {vi ⊂

C([0, 1]2), i = 1, 2, ...} , thus for the Lipschitzian function
U we have

‖ v − vi ‖∞≤‖ T (v0)− v0 ‖∞
∞∑
j=1

Lj +

i∑
j=1

Li−j∈j
. (19)

Proof: If
Li−j = max{‖ ∂φi−1

∂t ‖∞, ‖ ∂φi−1

∂s ‖∞},
that i=0,1,. . . , and m = 2(i + 1) thus for equation (1)

we have

‖ T (vi−1)− vi ‖∞

∣∣∣∣∣
∣∣∣∣ ∫ 1

0

∫ 1

0
(φi−1(s,t)

−Qm(φi−1(s, t))dtds

∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
∣∣∣∣φi−1 −Qm(φi−1)

∣∣∣∣∣∞,

So if we set
g(s, t) := φi−1 −Qm(φi−1),

And using of the mean value theorem and interpolating
property we have

ti =
1

2di=1 + v1
2d1
, sj =

1
2d2+1

+ v2
2d2
,

Where t0 = 0, and
i = 2d1 + v1, d1, d2 ≥ 1,

j = 2d2 + v2, i, j ≤ m− 1,

we have
‖ φi−1 −Qm(φi−1) ‖ ∞

‖ g(sj , tj) + ∂g

∂t
(ξ, γ)(ξ − tj)

∂g

∂t
(ξ, γ)(γ − sj) ‖ ∞

=‖ (1−Qm)∂φi−1

∂t
(ξ, γ)(1−Qm)∂φi−1

∂s
(ξ, γ) ‖ ∞

max{‖ ξ − ti ‖ ∞, ‖ γ − sj ‖ ∞}
≤ 2

2i ‖ (1−Qm ‖)∞‖∂φi−1

∂t
(ξ, γ) + ∂φi−1

∂s
(ξ, γ) ‖ ∞

≤ 4Li−1

21 ,

thus we have
‖ T (vi−1)− vi ‖ ∞ ≤ 4Li−1

2i

If
4Lk−1

2k
<εk, k = 1, 2, . . . , i,

that ε1, ε2, , , , , ε3>0 for i ≥ 1, we have

‖ T (vi−1)− vi ‖ ∞<εi (20)

By using of the triangle inequality we have

‖ (v−vi) ‖ ∞ ≤ |u−T i(v0)|∞+

i∑
j=1

Li−j ‖ Tvj−1−vj ‖ ∞

(21)
so, from (20) and (21) we conclude

‖ v − vi ‖ ∞ ≤‖ T (v0)− v0 ‖ ∞
∞∑
j=i

Lj +
i∑

j=i

Li−jεj
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Numerical Examples
We have applied the method described in equation of (16) for
solving some example from various references. Also, this
method some advantage for example, we dont need to solv-
ing any nonlinear numerical equation system, in this method
CPU time is very low and the solving of equations with this
method is an economical, as well, we define the sequence of
approximating functions vi for i=1,2,. . . , with an initial function
v0εC([0, 1]

2). In this section points are proposed is a

(xi, ti) =

(
1
2i ,

1
2i

)
, for i=1,2,. . . ,6. In addition, we can also

mention the following algorithm, for this method.

Algorithm
1. produce matrices M(s,t), andφ̂−1

m×m.
2. For i=1 to k do,

3. Product Matrix Al, Â1 from (13) and (14).
4. Compute Qm(φ(i− 1)(s, t))from (11).
5. Compute vi (x,y) from (16) for the supposed point.
6. Go to step 2.
Example 5.1 let the 2D nonlinear Fredholm integral equation of
below from [38]
u(x, y) = f(x, y) +

∫ 1

0

∫ 1

0
= f(x, y){t.sin(s) +

1)u(t, s)}dtds,
that
f(x, y) = x.cos(y)− 1

6sin(1)(3 + sin(1)),

and the exact solution is u(x, y) = x.cos(y).
In table1 we compared the maximum absolute errors of

our method and Haar wavelet methods [6, 27]. Also we have
shown an absolute error of Example 5.1 for m=128, in fig 1.
CPU time for this example for m=128 is about 79,062 seconds.

TABLE 1
COMPARISON BETWEEN THE MAXIMUM ABSOLUTE ERRORS OF OUR

METHOD AND HAAR WAVELET METHODS

i m Haar Wavelet Method ([11]) Haar Wavelet Method ([39]) Presented Method
1 2 8.6 × 10−3 8.90 × 10−3

2 4 1.2 × 10−2 5.2 × 10−2 1.14× 10−4

3 16 8.9 × 10−3 2.1 × 10−2 2.19 × 10−4

4 32 2.0 × 10−2 6.8× 10−3 3.40 × 10−5

5 64 6.0 × 10−3 1.9 × 10−3 5.24 × 10−5

6 128 4.3 × 10−5 8.14 × 10−6

Fig. 1 . Example of absolute error

CONCLUSION
One of the most efficient and effective methods for solving the
equation (1) is, using the Haar wavelets basis. Our work was dis-
cussed on using some properties of the 2D Haar wavelet basis.
In this paper, we introduce an approximate method for solving
of 2D nonlinear Fredholm integral equations, we applied 2D-
Haar wavelet to find numerical of solutions, we will try to get
an upper bounded for equations discussed and with using of
Banach fixed point theorem we proved the convergence theorem

of our method. In section, numerical example we choose one
example from [38] and we compared the maximum absolute
errors of our method with Haar wavelet methods [11], [39]. It
has been observed that the approximation solutions are obtained
are very suitable. Moreover, the CPU runs times in seconds are
presented. Also, we can expand this method to another type of
2D integral equation, such as Volterra or mixed of Volterra and
Fredholm.
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