

Improving Manufacturing Efficiency and Effectiveness Using Lean Six Sigma Approach

Attia Hussien Gomaa* Mechanical Eng. Department, Benha University, Cairo, Egypt.

Abstract: Success of any organization is directly related to how effectively it implements continuous improvement methodologies. Lean Six Sigma (LSS) is a continuous improvement approach that aims to improve process efficiency and effectiveness. This study explores the latest developments, current trends and perspectives of LSS in the manufacturing sector. LSS critical success factors (CSFs) in manufacturing are discussed. The results of this study revealed the most important contributions in terms of publications, authors, countries, application, objectives and LSS tools. The results found that, applying LSS approach can improving quality, reducing process variation, eliminating waste, improving production rate, improving process productivity, reducing cycle time, reducing non-value-added time, reducing lead time, and reducing production cost. Which lead for reducing unit price and increasing customer satisfaction. Furthermore, the results can be used for a systematic literature review by researchers and manufacturing leaders before embarking on a continuous improvement journey. Finally, an integrated LSS-DMAIC framework is developed for improving manufacturing efficiency and effectiveness.

Keywords: LSS, SCM, LSS-SCM, Supply chain improvement, TQM, manufacturing

Received: 06 July 2022; Accepted: 10 September 2022; Published: 02 December 2022.

I. INTRODUCTION

Process improvement is a methodology within total quality management (TQM), specifically in manufacturing. Its aim is to always be improving the process efficiency and effectiveness. As shown in Fig. (1), process efficiency is the ratio of outputs to inputs, or how well a process uses its resources to achieve its goals. Process effectiveness is the degree to which a process meets its intended outcomes, or how well a process satisfies its customers or stakeholders. Lean Six Sigma (LSS) is an approach for implementing TQM. LSS is a continuous improvement approach that aims to improve process efficiency and effectiveness. LSS is a customer focused improvement strategy. Fig. (2) shows the difference between lean and six sigma. LSS is a process continuous improvement approach for total quality management (TQM) implementation. LSS focuses on improving quality, reducing process variation, and eliminating activities that do not add value. LSS is a methodology that integrates Lean Manufacturing and Six Sigma strategies, which means that the principles, philosophies and tools of both methodologies are also united in one approach. LSS allows manufacturing process to become more efficient and effective in maintaining continuous improvement. As shown in Fig. (3), LSS framework follows the traditional Six Sigma steps of the DMAIC roadmap (Define, Measure, Analyze, Improve, Control). Table (1) shows the most common LSS tools. Table (2) shows proposed LSS-tools in different steps of DMAIC methodology., [1], [2],[3].

⁽c 2022 The Author(s). Published by KKG Publications. This is an Open Access article distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

^{*}Correspondence concerning this article should be addressed to Attia Hussien Gomaa, Mechanical Eng. Department, Benha University, Cairo, Egypt. E-mail: attia.goma@feng.bu.edu.eg

Fig. 1. Process effectiveness and efficiency.

Fig. 2. Core objectives of LSS.

Fig. 3. DMAIC framework.

TABLE 1 MOST COMMON LSS TOOLS IN MANUFACTURING DOMAIN

#	Tool Symbol	Tool description
1	58 / 6S	Visual control
2	5Why	5 Whys analysis
3	70C	7 Quality control tools
4	8Waste	Lean 8 waste analysis
5	ABC	Pareto classification analysis
6	ABC-XYZ	Advanced classification analysis
7	Actions	Improvement Actions
8	Andon	Visual control device
9	ANOVA	Analysis of variance
10	Brainstorming	Brainstorming group creativity technique
10	Benchmarking	Internal and external benchmarking & best practices
12	Bottleneck	Bottleneck Analysis
12	C&F	Cause_effect diagram
13	CBA	Cost benefit analysis
14	Charter	Project charter
15	Charte	Process control charts
10	COPO	Cost of poor quality
17	CorQ	Process compility analysis
10	Срк	Process capability analysis
19	CSA	Critical to quality
20	CTU	Critical to quality
21		Define Measure Analyze Improve Control cuele
22	DMAIC	Define-Measure-Analyze-Improve-Control cycle
23	DMADV	Define-Measure-Analyze-Design-validate
24	DPMO	Defects per million opportunities
25	DOE	Design of experiments
20	FISHDONE	Fishbone Diagram Failure mode affect analysis
27	Gage R&R	Gage Repeatability and Reproducibility
29	Gantt	Gantt Chart
30	Gemba	Go and see for yourself
31	Heijunka	Leveling of work flow
32	JIDOCA	Automatic Detection
33	JII	Just in time
34	Kanban	Kanban hoard
36	KANO	KANO model
37	KPIs	Key performance indicators dashboard
38	Mapping	Process mapping (flow chart, SIPOC, Spaghetti diagram, etc.)
39	Network	Network diagram
40	OEE	Overall Equipment Effectiveness
41	Pareto	Pareto chart
42	PCE	Problem solving cycle (Plan Do Check Act)
44	Poka-Yoke	Mistake Proofing
45	QFD	Quality function deployment
46	RACI	Responsible, Accountable, Consulted, Informed
47	RCA	Root cause analysis
48	SIPOC	Suppliers, Inputs, Process, Outputs, and Customers
49	SMART	SMART goals
50	SWED	Single-influte exchange of the
52	Taguchi	Taguchi method
53	Takt	Takt Time
54	TQM	Total quality management culture
55	TPM	Total productive maintenance
56	VAA	Value-added analysis
57	VOB	Voice of business
58	VOC	Voice of customer
59	YOV	Voice of process
00	OL	Sigina level

#	Most common LSS tools	Define	Measure	Analyze	Improve	Control
1	Brainstorming	Х		Х	Х	
2	Project charter	х				
3	Critical To Quality (CTQ)	х			х	
4	Process mapping (SIPOC)	х			х	
5	Current performance (KPIs, OEE)		х	Х		Х
6	Sigma level and process capability		х			х
7	Check Sheet and histogram		х	х		
8	Value Stream Mapping (VSM)		х		х	х
9	Design of experiments (DOE, Taguchi)		х			
10	Lean wastes and non-value added		х			Х
11	Takt time		х		х	
12	Pareto Diagram			х		
13	Scatter Diagram			х	х	
14	Process Control Charts			х		х
15	ANOVA and Hypothesis testing			х		
16	Cause & Effect Diagram			Х		
17	Visual control (5S)				х	
18	Standard work (SW)				х	
19	Kaizen events				х	
20	Control plan					х
21	Process control charts					х
22	Standard operating procedures (SOP)					х
23	KPIs dashboard					х
24	Before / after analysis					х
25	Internal and external auditing					х
26	Lessons learned					х

 TABLE 2

 PROPOSED LSS-TOOLS IN DMAIC METHODOLOGY

II. LITERATURE REVIEW

There are a number of ways that companies have used LSS methodology to improve the performance, the most important of which are: [1], [2], [4], [5], [6], [7], [8]:

- Decreasing wastes- Reducing the eight lean wastes that can impact the process is one of the central goals of the LSS methodology.
- Decreasing defects-LSS was originally developed to eliminate defects in manufacturing and reduce them within acceptable limits.
- Preventing errors Any process that is losing efficiency because of a high error rate in the system is a prime candidate for LSS improvement. Poka-Yoke tool prevents mistakes by forcing the user to do a task one way. Also, 5S tool reduces errors that interrupt the process efficiency by providing a clean, safe, efficient, and uncluttered environment.
- . Increasing process flexibility process performance requires rapid response to changes in supply and demand through the ups and downs of business cycles, as well as during crises. Companies with the most flexible supply chains are those that are specifically designed to meet the needs of the customer. Identifying Customer Critical Quality (CTQ) helps

companies build customer focus and thus resilience into their supply chains.

- Reducing process cycle time LSS review of a company's order fulfillment system helps identify issues that need to be addressed. This review is likely to conclude that some clear improvements are in order. Improvement may require system integration, automated picking, automated shipment planning, automated verification of shipments, and reduced paperwork.
- Reducing process costs: By eliminating inefficiencies and minimizing waste, LSS helps cut operational costs significantly, leading to improved profitability.
- Effective Problem Solving: LSS equips process with tools to identify root causes of issues and implement lasting solutions, ensuring continuous improvement.
- Creating a competitive advantage Based on the above benefits, applying LSS principles can create competitive advantage, improve employee morale and increase revenues and profits.

Based on the literature review, it was found that the most important critical success factors for LSS are as shown in Table (3)., [1], [2], [9], [10], [11], [12], [13].

Perspective	Factors	[1]	[2]	[9]	[10]	[11]	[12]	[13]
1) Managerial factors	1) Management support, commitment and involvement	х	Х	Х	х	Х	Х	Х
	2) Leadership development and awareness	х	х		х	х	х	
	3) Clear strategic plan, business plan, vision and mission			х		х	х	х
	4) Effective external and internal benchmarking of best practices		х					
	5) Clear goals, objectives, policies, and KPIs		х	х				
	6) Information quality and sharing			х				х
	7) Focus on competitive priorities			х				
	8) Effective teamwork management					х		
2) Customer factors	9) Customer engagement and satisfaction						х	
	10) Effective customer relationship management (CRM)						х	
4) HRM factors	11) Effective Organizational structure & responsibility matrix		х	х	х		х	Х
	12) Employee training, education and awareness	х	х	х	х	х	х	Х
	13) Employee attitude, skills and expertise					х	х	
	14) Effectives reward, recognition and motivation system		х			х	х	
5 IT factors	15) Effective information and communication technology	х	х	х	х	х	х	х
	16) IT Infrastructure						х	
	17) Effective LSS software						х	
6) Facility factors	18) Effective facility layout, configuration and planning		х					
	19) Effective project selection, planning and control system	х	х	х	х	х	х	х
	20) Effective facility resources and infrastructure				х		х	
7) Continuous	21) Understanding LSS methodology, techniques and tools	х	х				х	Х
improvement factors	22) Standardization of procedures and information							Х
	23) Linking LSS tools to business strategy							Х
	24) Linking LSS tools to supply chain							х
	25) Employee engagement, empowerment and satisfaction	х	х			х		
	26) Project success stories, best practices and benchmarking					х		х
	27) Effective change management and Organizational culture	х	х	х	х	х	х	
8) Financial factors	28) Financial resource capabilities			х	х	х	х	х
	29) Economic benefits			х				

 TABLE 3

 LSS-SCM CRITICAL SUCCESS FACTORS (CSFS)

Several studies have focused on the applications of LSS in manufacturing domain. Table (4) presents a comprehensive survey of LSS studies, and they are classified based on contribution, application, main objectives and main LSS tools. In conclusion, the main findings of the previous literature review (from [1] to [36]) indicate that applying the LSS approach can improving quality, reducingprocess variation, eliminating waste, improving production rate, improving process productivity, reducing cycle time, reducing non-value-added time, reducing lead time, reducing production cost, reducing unit price, and increasing customer satisfaction.

#	Contribution	Application	Main objectives	Main LSS Tools
[2]	Developed a LSS framework for manufacturing	A case study in production of fasteners in Egypt	 Improving process OEE Improving sigma level Improving process capability 	DMAIC, Mapping, VSM, 8Waste, Pareto, δL, Charts, Process capability, 5S, OEE, DOE, TAG, RCA, C&E
[14]	Discussed a six-sigma framework for manufacturing	A case study in a spare parts company in Turkey	 Improving process performance Reducing lead time Reducing production cost 	DMAIC, Mapping, δL, R&R%, ANOVA, FMEA, RCA, C&E
[15]	Developed a Kaizen framework for increasing energy efficiency	A case study in a refrigerating company	- Increasing energy consumption performance	DMAIC, Layout, Mapping, 5S, Kaizen, 8Waste
[16]	Discussed a LSS framework for manufacturing	A case study in a manufacturing car parts supplier	- Reducing process defects	DMAIC, Charter, Mapping, CTQ, Charts, Pareto, Process capability, RCA, C&E
[17]	Developed a LSS framework for manufacturing	A case study in a metal door manufacturing	- Reducing scrap rate	DMAIC, Charter, Mapping, CTQ, VOC, R&R%, Charts, Pareto, Process capability, RCA, C&E
[18]	Discussed a lean framework for manufacturing	A case study in a labeling and packaging manufacturing in Bangladesh	 Reducing lead time Improving Utilized equipment effectiveness Reducing Customer complaint rate 	DMAIC, Charter, Mapping, VSM, 5S, charts, RCA, C&E
[19]	Developed a LSS framework for manufacturing	A case study in a Textile Sector	- Improving process quality & productivity - Reducing lead time	DMAIC, Charter, Mapping, VSM, 5S, charts, Process capability, RCA, C&E
[20]	Discussed a six-sigma framework for manufacturing	A case study in a rubber weather strips company in Indian.	 Reducing rejection rate Reducing production cost 	DMAIC, CTQ, Mapping, Pareto, C&E, 5S, CBA.
[21]	Discussed a lean framework for Manufacturing	A case study in an automotive parts assembly line	- Reducing setup time	Mapping, 8Waste, SMED, Gemba, SW, charts, Pareto, RCA, C&E
[22]	Developed a LSS framework for manufacturing environment	A case study in a bias tyre manufacturing	- Reducing waste - Improving OEE	DMAIC, Mapping, OEE, charts, Pareto, RCA, C&E
[23]	Developed a LSS framework for manufacturing	A case study in milking processes	- Reducing defect % - Reducing cost	DMAIC, Mapping, VSM, RCA, C&E, PDCA,
[24]	Discussed a LSS framework for manufacturing	A case study in steel industry	 Reducing non-value- added time Improving Process cycle efficiency Reducing lead time 	DMAIC, Mapping, Charter, VSM, Pareto, RCA, C&E,

 TABLE 4

 LSS STUDIES IN MANUFACTURING DOMAIN

#	Contribution	Application	Main objectives	Main LSS Tools
[25]	Proposed a LSS - Quick Changeover - framework for manufacturing	A case study in ready-made garments (RMG) industry in Bangladesh	 Improving Process cycle efficiency Reducing production cost 	Mapping, SMED, RCA, C&E
[26]	Developed a LSS framework for manufacturing	A case study in a compound animal feed manufacturing in Ireland	 Reducing inventory stock Reducing lead time 	DMAIC, Mapping, VSM, Pareto, SW, PCC
[27]	Discussed a six-sigma framework for manufacturing	A case study in a packaging olives production	 Minimizing Process defects & variance Reducing production cost 	DMAIC, charter, Mapping, CTQ, Benchmarking, Pareto, DOE, Process capability, Charts, RCA, C&E
[28]	Developed a sustainable LSS framework for manufacturing	A case study in producing carrageenan in Indonesia	- Improving Manufacturing Sustainability Index (MSI)	DMAIC, Mapping, CTQ, VSM, FMEA, RCA, C&E
[29]	Proposed a LSS framework for manufacturing	A case study in an automobile manufacturing in Indian	 Reducing defect % Increasing production rate Reducing idle time 	DMAIC, Mapping, Charter, VSM, 8Waste, Pareto, C&E, δL
[30]	Developed a LSS framework for manufacturing	A case study in an engine cylinder company in Indian	 Reducing defect % Increasing sigma level. 	DMAIC, Charter, Mapping, ABC, Pareto, Charts, C&E
[31]	Presented a LSS framework for manufacturing	A case study in laminated panel production	Reducing machine downtimeImproving process OEE	DMAIC, Charter, Mapping, CTQ, Takt, VSM, OEE, Charts, C&E, PDCA, FMEA.
[32]	Developed a LSS framework for manufacturing	A case study in iron industry	 Reducing lead time Reducing defect % Increasing sigma level. 	DMAIC, Charter, Gantt, Mapping, VSM, δL, Charts, 5Why, C&E
[33]	Proposed a six-sigma framework for manufacturing	A case study in a chemical company	- Reducing customer complaints	DMAIC, Charter, Mapping, Cpk, 5Why, C&E
[34]	Presented a VSM framework for manufacturing	A case study in footwear manufacturing	- Reducing defect % - Reducing lead time - Reducing WIP	DMAIC, VSM, Takt, DOE, Taguchi
[35]	Developed a LSS framework for manufacturing	A case study in food industry	- Improving process OEE	DMAIC, Mapping, VSM, OEE, ANOVA, 5S, C&E
[36]	Proposed a sustainable lean production framework	A case study in cookware manufacturing	 Improving sustainability Minimizing safety incidents 	DMAIC, Charter, KPIs, VSM, Pareto, 8Waste, C&E

TABLE 4 CONT...

III. PROPOSED LSS FRAMEWORK

Based on the analysis of the literature review, Table (5) shows the most common LSS objectives in manufacturing domain and the appropriate LSS tools to achieve these objectives. Table (6) shows the process lean (DWONTIME) waste analysis and appropriate LSS tools to overcome this waste. Table (7) shows the main resources, main objectives, main problems, and appropriate LSS tools to improve resource productivity. As shown in Table (8), LSS-DMAIC framework is developed to improve manufacturing efficiency and effectiveness.

#	Perspective	LSS Objectives	LSS Tools
1	Customer	Improving customer satisfaction	VOC, CSA, SW, QFD, 5WA, C&E
2	Production Management	Improving production rate Reducing non-value-added Reducing cycle time Improving resource productivity: - Improving labor productivity - Improving material productivity - Improving machine productivity - Improving energy productivity, etc. Improving machine availability Improving overall equipment effectiveness (OEE) Reducing work in process (WIP) Improving time utilization	PM, 5S, VSM, TPM, OEE, SW, Kanban, 5WA, C&E
3	Quality Management	Improving quality % Improving sigma level Reducing rework time	VOC, CTQ, CC, δL, 5S, PC, ABC-XYZ, SW, QFD, 5WA, C&E

 TABLE 5

 LSS OBJECTIVES AND TOOLS IN MANUFACTURING PROCESSES

TABLE 6
PROCESS LEAN WASTES (DWONTIME) ANALYSIS AND LSS TOOLS

#	Waste Type	Waste Description	Root Cause	LSS Tools
1	Defects	Produce defective products or need to be rectified.	Lack of motivation	Pareto chartCause–effect diagram
2	Waiting	To wait unnecessarily, Waiting for materials, Waiting for handling.	Poor coordination	VSMTPM
3	Over-Production	Produce more than the customer demanded.	Poor production planning	Production planningStandard work
4	Not Utilizing Talent	Lose time, ideas, skills by ignoring employee ideas.	Resistance to change	Advanced trainingMotivation program
5	Transportation of materials	Unnecessary transportation of materials.	Poor housekeeping	5S (Visual control)VSM
6	Inventory Excess	Over stock of raw materials, WIP and final products.	Poor material planning	Material classificationMaterial planning
7	Motion of people	Perform unnecessary movements for work.	Poor housekeeping	 5S (Visual control) Standard work
8	Excess Processing	More work or higher quality than required.	Lack of standardization	Standard workAdvanced training

#	Main Resources	Main objectives	Main problems	LSS Tools
1	Manpower	Improving labor	- Lack of training & education	- Visual control (5S)
		productivity	- Lack of motivation	- Material classification
			- Lack of Kaizen culture	- Material Defect Analysis
2	Method	Improving work	- Lack of process planning	- QA / QC check list
		Saudization	- Lack of standardization	- Standard procedure & doc.
			- Lack of objectives & KPIs	- Standard time analysis
3	Machine	Improving	- Equipment breakdown	- Check machining parameters
5	Iviacinite	machine	Low performance rate	Process time analysis
		productivity	Low performance rate	Value added time analysis
		productivity	- Emitted equipment	- value added time analysis
4	Materials	Improving	- Low material quality	- KAIZEN training program
		material	- Lack of material control	- Advanced training program
		productivity	- Poor storage conditions	- Update motivation program
5	Maagunamant	Improving	In afficient inspection to als	A course of inspection tools
3	Measurement	Improving	- Inefficient inspection tools	- Accuracy of inspection tools
		measurement	- Lack of statistical tools	- Sampling size and analysis
		system efficiency	- Lack of tools calibration	- Auditing system
6	Management	Improving work	- Lack of KPIs dashboard	- Internal & external
	System	Saudization	- Lack of knowledge about	benchmarking
			LSS	- KPIs dashboard
			- Lack of benchmarks	- Standard information
				- Standard Templates
7	Eurinen mentel	Inconstant	Through modeling and deland	Visual control (55)
	Environmental	Improving	- Unsale working conditions	- visual control (55)
		working	- Lack of safety PPE	- Improve working conditions
		conditions	- Lack of safety audit	- JOD nazard analysis (JHA)
8	Time	Improving time	- Lack of standardization	- Visual control (5S)
		utilization	- Lack of process planning	- Standard time analysis
			- Lack of objectives & KPIs	- Standard procedure & doc.

TABLE 7PROCESS RESOURCE ANALYSIS AND LSS TOOLS

Phase	Objectives	Key Activities	Used Tools
		1) Defining the goals, objectives and scope of work	Brainstorming
		2) Building teamwork & developing project charter	Brainstorming
	~	3) Defining product description and required processes	Brainstorming
е	Studying	4) Defining current situation (strength & weakness)	SWOT matrix
efin	process, product	5) Defining process problems and targets	Brainstorming
Ă	and problems in	6) Create a project charter & a project plan	Project charter
	detail.	7) Defining customer requirements & CTQ factors	CTQ and VOC
		8) Defining process mapping (flow chart, SIPOC)	SIPOC diagram
		9) Identifying key metrics	KPIs metrics
	D · · · 1	10) Designing standard templates & collect information	Brainstorming
Ire	Designing and	11) Measuring current performance evaluation	KPIs dashboard
ası	collecting the	12) Measuring sigma level & process capability	Sigma level, Cpk
Me	information	13) Preparing current value stream mapping	VSM
	miormation.	14) Measuring process wastes & defects	8 Lean wastes
		15) Using appropriate statistical analysis tools	7QC tools
		16) Analyzing process defects	Pareto chart
e	Applying analysis tools and identifying root causes	17) Analyzing process variance	ANOVA
lyz		18) Analyzing critical to quality (CTQ)	SPC & 7QC
vna		19) Analyzing process wastes & bottleneck	RCA
~		20) Analyzing process parameters	DOE
		21) Conducting RCA and fishbone diagrams	C&E diagram
		22) Determining improvement recommendations	Brainstorming
	Implementing solutions according to priorities	23) Identifying and prioritizing opportunities for improvement	Brainstorming
/e		24) Preparing the improvement plan	Brainstorming
orov		25) Training the teamwork groups	Advanced training program
duj		26) Implementing kaizen & lean principles	Kaizen, 5S, SW, etc.
		27) Implementing six sigma principles	7QC tools
		28) Implementing changes and monitoring progress	Brainstorming
		29) Developing and implementing a control plan	Brainstorming
		30) Designing and document standard practices	QA/QC
		31) Following process control charts	Control charts
		32) Following QA/QC checklists	QA/QC
-	Monitoring the	33) Following Kaizen improvement	Kaizen, 5S, SW, etc.
otro	process and	34) Following KPIs, Sigma level, process capability,	KPIs dashboard
Con	achieving daily	35) Before / after analysis	KPIs analysis
	improvements	36) Creating a culture of continuous improvement	Kaizen events
		37) Documenting and standardizing processes:	Auditing
		38) Providing training and support	Brainstorming
		39) Preparing project close-out report	Brainstorming
ļ		40) Communicating results & learned lessons	Brainstorming

TABLE 8 PROPOSED LSS-DMAIC FRAMEWORK FOR MANUFACTURING PROCESSES

IV. CONCLUSION

LSS has proven to be an effective methodology and strategy for the manufacturing sector's success to improve process productivity and quality. This study explored the state of the art, current trends, and perspectives of LSS in the context of the manufacturing sector. The results found that applying LSS approach can improve quality, reduce process variation, eliminate waste, improve production rate, improve process productivity, reduce cycle time, reduce non-value-added time, reduce lead time, reduce production cost, and reduce unit price, and increase customer satisfaction. Furthermore, the results can be used for a systematic literature review by researchers and manufacturing leaders before embarking on a continuous improvement journey. Finally, this study proposed LSS-DMAIC framework to improve manufacturing efficiency and effectiveness.

REFERENCES

[1] A. H. Gomaa, "A systematic review of lean six sigma in manufacturing domain," *Engineering Research Journal (Shoubra)*, vol. 52, no. 4, pp., October 2023, (in print).

- [2] A. H. Gomaa, "Improving productivity and qualityof a machining process by using lean six sigma approach: A case study," *Engineering Research Journal (Shoubra)*, vol. 53, no. 1, January 2024, (in print).
- [3] F. T. A. Barbosa, R. S. Peruchi, S. N. Morioka, and P. R. Junior, "Lean, six sigma and sustainability case studies on supply chain management: a systematic literature review," *Revista de Gestão e Secretariado*, vol. 14, no. 9, pp. 15 509–15 536, 2023.
- [4] F. Almaz and N. Akar, "The academic pattern of the lean six sigma approach: a descriptive content analysis of project-based studies within turkey," *International Journal of Lean Six Sigma*, vol. 14, no. 3,pp. 588–609, 2023.
- [5] M. M. Crowdle, O. McDermott, and A. Trubetskaya, "A benefit costing process for lean six sigma programs," *The TQM Journal*, vol. 35, no. 9, pp. 369–387, 2023.
- [6] S. Nelson, O. McDermott, B. Woods, and A. Trubetskaya, "An evaluation of lean deployment in irish micro-enterprises," Total Quality Management & Business Excellence, vol. 34, no. 7-8, pp. 1032–1051, 2023.
- [7] J. Antony, E. Psomas, J. A. Garza-Reyes, and P. Hines, "Practical implications and future research agenda of lean manufacturing: a systematic literature review," Production planning & control, vol. 32, no. 11, pp. 889–925, 2021.
- [8] A. Ishak, K. Siregar, R. Ginting, and D. Gustia, "A systematic literature review of lean six sigma," in *IOP Conference Series: Materials Science and En*gineering, vol. 1003, no. 1. IOP Publishing, 2020, p. 012096.
- [9] M. Samanta, N. Virmani, R. K. Singh, S. N. Haque, and M. Jamshed, "Analysis of critical success factors for successful integration of lean six sigma and industry 4.0 for organizational excellence," *The TQM Journal*, 2023.
- [10] S. M. Ali, M. A. Hossen, Z. Mahtab, G. Kabir, S. K. Paul *et al.*, "Barriers to lean six sigma implementation in the supply chain: An ism model," *Computers & Industrial Engineering*, vol. 149, p. 106843,2020.
- [11] A. K. Yazdi, T. Hanne, and J. C. O. Gómez, "A hybrid model for ranking critical successful factors of lean six sigma in the oil and gas industry," The TQM Journal, vol. 33, no. 8, pp. 1825–1844, 2021.
- [12] M. Houti, L. El Abbadi, and A. Abouabdellah, "Critical success factors for lean implementation -Projection on SMEs" in Proceedings of the International *Conference on Industrial Engineering*

and Operations Management, 2019, pp. 526–537.

- [13] M. Selvaraju, M. A. Bhatti, V. P. K. Sundram, and S. Azmir, "The influence of critical success factors of lean six sigma towards supply chain performance in telecommunication industry, malaysia," *International Journal of Supply Chain Management*, vol. 8, no. 6, pp. 1062–1068, 2019.
- [14] M. Altuğ, "Application of six sigma through deep learning in the production of fasteners," *International Journal of Lean Six Sigma*, 2023.
- [15] A. Androniceanu, I.-C. Enache, E.-N. Valter, and F.-F. Raduica, "Increasing energy efficiency based on the kaizen approach," *Energies*, vol. 16, no. 4, p. 1930, 2023.
- [16] G. C. P. Condé, P. C. Oprime, M. L. Pimenta, J. E.Sordan, and C. R. Bueno, "Defect reduction using dmaic and lean six sigma: A case study in a manu-facturing car parts supplier," *International Journal of Quality & Reliability Management*, 2023.
- [17] I.-C. Enache, O. R. Chivu, A.-M. Rugescu, E. Ionita, and I. V. Radu, "Reducing the scrap rate on a production process using lean six sigma methodology," *Processes*, vol. 11, no. 4, p. 1295, 2023.
- [18] M. A. Habib, R. Rizvan, and S. Ahmed, "Implementing lean manufacturing for improvement of operational performance in a labeling and packaging plant: A case study in bangladesh," *Results in Engineering*, vol. 17, p. 100818, 2023.
- [19] G. Jiménez-Delgado, I. Quintero-Ariza, J. Romero- Gómez, C. Montero-Bula, E. Rojas-Castro, G. San-tos, J. C. Sá, L. Londoño-Lara, H. Hernández-Palma, and L. Campis-Freyle, "Implementation of lean sixsigma to improve the quality and productivity in textile sector: A case study," in *International Con-ference on Human-Computer Interaction*. Springer, 2023, pp. 395–412.
- [20] A. Mittal, P. Gupta, V. Kumar, A. Al Owad, S. Mahlawat, and S. Singh, "The performance improvement analysis using six sigma dmaic methodology: A case study on indian manufacturing company," *Heliyon*, vol. 9, no. 3, 2023.
- [21] C. Oliveira and T. M. Lima, "Setup time reduction of an automotive parts assembly line using lean toolsand quality tools," *Eng*, vol. 4, no. 3, pp. 2352–2362,2023.
- [22] A. Sasikumar, P. Acharya, M. Nair, and A. Ghafar, "Applying lean six sigma for waste reduction in a bias tyre manufacturing environment," *Cogent Business & Management*, vol. 10, no. 2, 2023.

- [23] E. G. Satolo, G. A. Ussuna, and P. A. Mac Lean, "Lean six sigma tools for efficient milking processes in small-scale dairy farms," *Ingeniería e Investi*gación, vol. 43, no. 3, p. 7, 2023.
- [24] K. Srinivasan, P. Sarulkar, and V. K. Yadav, "Operational excellence of the steel industry using the lean six sigma approach: a case study," *International Journal of Quality & Reliability Management*, 2023.
- [25] G. F. I. Toki, T. Ahmed, M. E. Hossain, R. K. K. Alave, M. O. Faruk, R. Mia, and S. R. Islam, "Single minute exchange die (smed): A sustainable and welltimed approach for bangladeshi garments industry," *Cleaner Engineering and Technology*, vol. 12, p. 100592, 2023.
 - [26] A. Trubetskaya, O. McDermott, and P. Brophy, "Implementing a customised lean six sigma methodology at a compound animal feed manufacturer in ireland," *International Journal of Lean Six Sigma*, 2023.
- [27] P. Tsarouhas and N. Sidiropoulou, "Application of six sigma methodology using dmaic approach for a packaging olives production system: a case study," *International Journal of Lean Six Sigma*, 2023.
 - [28] D. M. Utama and M. Abirfatin, "Sustainable lean six-sigma: A new framework for improve sustainable manufacturing performance," *Cleaner Engineering and Technology*, vol. 17, p. 100700, 2023.
- [29] A. Sharma, N. Bhanot, A. Gupta, and R. Trehan, "Application of lean six sigma framework for improving manufacturing efficiency: a case study in indian context," *International Journal of Productivity and Performance Management*, vol. 71, no. 5, pp. 1561–1589, 2022.
 - [30] P. Kumar, D. Singh, and J. Bhamu, "Development

and validation of dmaic based framework for process improvement: a case study of indian manufacturing organization," *International Journal of Quality & Reliability Management*, vol. 38, no. 9, pp. 1964–1991, 2021.

- [31] D. L. Hardy, S. Kundu, and M. Latif, "Productivity and process performance in a manual trimming cellexploiting lean six sigma (lss) dmaic-a case study in laminated panel production," *International Journal of Quality & Reliability Management*, vol. 38, no. 9,pp. 1861– 1879, 2021.
- [32] F. Murmura, L. Bravi, F. Musso, and A. Mosciszko, "Lean six sigma for the improvement of company processes: the schnell spa case study," *The TQM Journal*, vol. 33, no. 7, pp. 351–376, 2021.
 - [33] V. S. Patyal, S. Modgil, and M. Koilakuntla, "Application of six sigma methodology in an indian chemical company," *International Journal of Pro- ductivity and Performance Management*, vol. 70, no. 2, pp. 350–375, 2021.
 - [34] Q. Liu and H. Yang, "An improved value stream mapping to prioritize lean optimization scenarios using simulation and multiple-attribute decision-making method," *IEEE Access*, vol. 8, pp.204 914–204 930, 2020.
- [35] N. Nandakumar, P. Saleeshya, and P. Harikumar, "Bottleneck identification and process improvement by lean six sigma dmaic methodology," *Materials Today: Proceedings*, vol. 24, pp. 1217–1224, 2020.
- [36] P. Tiwari, J. K. Sadeghi, and C. Eseonu, "A sustainable lean production framework with a case implementation: Practice-based view theory," *Journal of Cleaner Production*, vol. 277, p. 123078, 2020.