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Abstract: This paper explores the dynamic volatility spillovers among five major futures in China, including rebar,
hot-rolled coils, iron ore, cooking coal and coke. We employ the Dynamic Conditional Correlation (DCC) GARCH
model to examine the volatility spillover effects among the markets considering structural breaks invariance. We used a
modified Iterated Cumulative Sum of Squares (ICSS) algorithm to detect the structural breaks. The empirical results
show there are strong correlations across the black series futures market. Especially, the relation between rebar and hot-
rolled coils, coke and cooking coal is more closely than other pairs. This research provides insight into the information
transmission in black series futures market, which is meaningful to market participants making hedging and trading
strategies. This study extends the literature by investigating the dynamic linkage among five kinds of black series futures.
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INTRODUCTION
As an important indicator to measure the progress of a country’s industrial modernization, the steel industry is

significant to a countrys economy. Until 2018, the yearly output of crude steel in China arrived 928 million tones,
accounted for the half of the world’s total steel production. The huge demand and output of steel triggered the develop
of many industries, especially the upstream industry which are connected to the steel metallurgy like iron ore, cooking
coal and coke. Since 2009, the rebar was issued by SHFE, a series of black futures were listed in DCE and SHFE
respectively. With the listed of iron ore futures in 2013, a complete futures hedging platform of steel production chain
has been formed.

The black series futures cover the steel-related commodities. Rebar and hot rolled coils are the final steel products,
iron ore is the basic composition of them. Coke is the essential material in steel metallurgical which is the product
of coking coal after volatilization at high temperature, the steel industry is the main consumer of coke. Cooking
coal is also the source of fuel power. As the booming development in steel industry, it has attracted large number
of investors. Due to the instability in policy and economic, black series shows the violent volatility, it increases the
uncertainty in return. While futures market provides a benchmark price for transactions on the spot, study the dynamic
correlation among markets can help investor to understand information transmission mechanism among these markets.
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It’s significant to market participants make hedge and trade strategies to decrease risk and policy makers improve the
regulatory measures.

This study extends the literature by investigating the dynamic linkage among five kinds of black series futures.
For this purpose, we adopt the DCC model of Engle (2002) to detect the volatility spillover across the markets. This
classic model is usually used to study the time-varying correlation between different assets (e.g., (Behmiri, Manera,
& Nicolini, 2019; Carvalho, 2018; Du, Elkamhi, & Ericsson, 2019; Fałdziński & Pietrzak, 2015; Kinata, 2016)).
However, Hillebrand (2005), and Mikosch and Stărică (2004) point out that if ignore the structural change points in
the sample, the result of GARCH effect will appear spurious persistence, the estimated autoregressive parameters will
be bias. Therefore, we take the change points into consideration in this study. Inclan and Tiao (1994) proposed the
ICSS algorithm to capture the change of variance. Sansó, Carrion, and Aragó (2020) found that when the conditional
variance obeys a non-independent process such as the GARCH process, the IT statistics of ICSS model may be greatly
overestimated, then the modified ICSS model is developed. First, we employ the Kappa-2 (k-2) of the modified ICSS to
test the change point among five futures. Then we adopt the DCC GARCH model allowing the structural breaks as
dummy variables in variance to identify the dynamic correlation across the markets.

This paper is organized as follows: section 2 reviews the literature which relevant to black series futures market and
research methods. Section 3 and 4 describe the analytical method, data and preliminary analysis. Section 5 discuss the
empirical result and section 6 provide the conclusion.

LITERATURE REVIEW
Numerous researching on dynamic linkage among futures markets have been studied, most of them are focus on

agriculture, energy and precious metal industry. Due to the late start of Chinese futures market, most black series
futures have been issued in recent years, the studies on these futures is relatively scarce. Most studies have focused
on the relationship between futures and spot. J. Zhou (2010) analyzed the relationship between steel futures and
spot by employing Vector Error Correction Model (VECM) and EGARCH model, found exist long term equilibrium
relationship and bidirectional spillover between rebar spot and futures. Xiao (2014) have done the research on the
relationship between coke spot and futures, showed the strong relationship between spot and futures. Kim and Lim
(2019) applied VECM model research the price discovery mechanism and bivariate EGARCH (1, 1) model studied the
volatility spillover between spot and futures market by using 7 kinds steel-related futures which are listed on Chinese
futures market, found wire rod, coking coal, coke and silico-manganese exist bidirectional spillover and rebar spillover
from spot to futures. Huang (2017) found futures market of coke, cooking coal and rebar plays a leading role in price
discovery, coke owns the strongest price discovery function followed by cooking coal and rebar. This study applied the
Granger causality test, VECM model, Johansen cointegration test and variance decomposition.

Some studies have done to arbitrage strategy in black series futures. L. Zhou (2017) chose iron ore rebar and coke
research the arbitrage strategies. This study employed cointegration test found among them exist long-term stable
cointegration relationship and by using Jarque-Bera statistics, determined the best arbitrage strategies. Besides, Li
(2014) done the research about the arbitrage of cooking coal, iron ore and rebar futures, shows the rebar and cooking
coal, rebar and coke have strong correlation. Su (2017) tested the correlation coefficient between black futures and spot
employed Copula-GARCH model and estimated the hedge ratio of a single variety using minimum variance and use
the BEKK GARCH model to predict the variance and covariance of returns.

Some literatures in correlation of black future shows the strong relationships across them. Q. Wang, Hang, Su, and
Zhou (2018) examined the dynamic correlation in black series futures in short-term, medium term and long-term and
the DCC-GARCH-t model are employed. Then applied Granger causality in risk test to measure the risk contagion.
Research found there is a positive dynamic correlation between black futures, the dynamic correlation is largest during
the medium-term time scale. Cooking coal futures and coke futures have the highest correlation, the complexity of
the infection will increase as the length of the time scale increases. The spread of "black" futures is synchronized.
Q. Wang, Dai, and Zhou (2020); J. Wang and Zheng (2019) used the Vector Autoregressive (VAR) model and Granger
causality test to investigate the linkage across futures and spot of iron ore and coke. They found the iron ore spot have
significant impact on coke futures, the spillover from coke futures to spot is not strong, it proves that Chinas coke
futures are not mature enough. Q. Wang et al. (2020) analyzed the co-movement between coke, cooking coal and pig
iron. Johansen cointegration test and Granger causality test are applied. This study found a bidirectional spillover exist
in coke, cooking coal and pig iron market, the pig iron is the main factor that impact the coke price.
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Mangy literatures adopt DCC GARCH model to test the dynamic correlation between different assets. Traditional
studies assume that the volatility of the asset return is a stable process, however, financial markets will face large shocks,
which may lead to structural changes in asset returns and cause high volatility persistence. Rapach and Strauss (2008)
use the modified ICSS algorithm to study the structural changes in the variance of the 8 US dollar exchange rate and
combined change points with GARCH model to conduct in-sample test and out-of-sample test on the series. They
pointed out allowing the structural breaks could improve the volatility forecast accuracy. Güloğlu, Kaya, and Aydemir
(2016) investigated the dynamic linkage among Latin American stock markets with the consider of structural breaks.
They set the change point as a dummy variable and put it into the variance equation. Xie and Zhao (2012) applied
Bai and Perron test and modified ICSS algorithm to detect the change point in RMB exchange rate. Then introduce
structural breaks points into the GARCH family model, compare the changes of parameter estimates before and after
considering the change point. Mensi, Hammoudeh, and Yoon (2015) apply ICSS algorithm to detected structural breaks
in U.S. dollar exchange rate, WTI, Brent, kerosene, gasoline and propane. Then took change point into bivariate DCC
EGARCH model to compare the correlation with and without change point.

METHODOLOGY
Modified Iterated Cumulative Sums of Squares (ICSS) Algorithm

To detect the structural breaks, we apply Kappa-2 (k-2) statistics of modified ICSS algorithm. Inclan and Tiao
(1994) proposed iterated cumulative sums of squares (ICSS) algorithm to identify discrete points of variance, the IT
statistics is defined as:

IT = sup
∣∣(T/2)0.5Dk

∣∣ (1)

Dk =
(

Ck/CT )− k/T (2)

Ck = ∑
k
t=1 z2

t ,k = 1,2, . . . ,T and zt ∼ i.i.d.
(
0,σ2) (3)

Obviously, D0 = DT = 0. The null hypothesis of this algorithm is that the unconditional variance zt is a constant
at time k, the alternative hypothesis is existing unconditional variance structure breaks at a certain point. When null
hypothesis is rejected, it points that the maximum value of (T/2)0.5Dk is greater than the critical value, k is the structural
break point. sup |W ∗(r)| is standard Brown Bridge distribution, expression is W ∗(r) =W (r)− rW (1).

When the conditional variance of the time series meets the conditions in the dependent process, the IT statistics of
model may overestimate, to overcome this problem, modified ICSS algorithm was proposed by Sansó et al. (2020), the
functions show as:

AIT = sup
∣∣(T/2)0.5Gk

∣∣ (4)

Where

GK = λ
−0.5 [Ck − (k/T )CT ] (5)

λ̂ = γ̂0 +2∑
m
i=1

[
1− l(m+1)−1]

γ̂l (6)

γ̂l = T−1
T

∑
t=l+1

(
e2

t − σ̂
2)(e2

t−1 − σ̂
2) (7)

σ̂
2 = T−1CT (8)

The 1− l(m+1)−1 is a Bartlett lag window, so AIT depends on the choice of m and the asymptotic distribution of
AIT is also the distribution of sup |W ∗(r)| which under general conditions.
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DCC GARCH Model
To investigate the dynamic spillover in black series futures, the DCC-GARCH model is applied. In this model, we

allow the structural breaks as dummy variables to univariate GARCH process. The DCC-GARCH model is used to
construct the time-varying correlations among variables which was proposed by Engle (2002). The modeling steps are
as follows:

The mean equation is defined as:

ri,t = µi,t(θ)+ εi,t , εi,t | Ωt−1 ∼ N (0,Ht) (9)

where ri,t is return of rebar, hot rolled coils, iron ore, coke and cooking coal at time t. µi,t(θ) is the conditional 5×1
mean vector of ri,t .εi,t is a sequence of random variables.

Then estimates the conditional variance hi,t with univariate GARCH (1,1) process. The structural breaks are
considered in this model and the change points are brought into the variance equation as dummy variables.

hi,t = ω +α1ε
2
i,t−1 +β1h j,t−1 + γiDi,t (10)

where Di,t represents a vector of dummy variables for black series futures at time t. Di,t = 1 when t > ti,v, i is the
time of structural breaks, otherwise it is zero.

The conditional variance-covariance matrix is defined as:

Ht = DtRtDt (11)

where Dt is a diagonal matrix of square root conditional variances, Rt is a t × N(N−1)
2 matrix containing the

time-varying conditional correlations.

Dt = diag
(

h
1
2
iit , . . . ,h

1
2
NNt

)′

Rt = diag
(

q−
1
2

ii,t , . . . ,q
− 1

2
NN,t

)
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q−

1
2
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2
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where Qt = (qi j,t) is a N×N symmetric positive definite matrix is given by

Qt = (1−α −β )Q̄+αut−1u′t−1 +βQt−1 (13)

where ut is the N ×1 vector of standardized residuals, Q̄ is the N ×N unconditional variance matrix of ut , and α

and β are nonnegative scalar parameters satisfying α +β < 1.
The main purpose of this study is researching the dynamic correlation among black series futures. Through Ht , the

dynamic correlations can be obtained by:

ρi j,t =
hi j,t√

hii,t
√

h j j,t
(14)

DATA AND PRELIMINARY ANALYSIS
Data

In this study, the five varieties of black futures are examined. The span of sample is from 21st March 2014 to
11th May 2020, including 1496 observations. Black series futures contracts include rebar (RB), hot rolled coils (HC),
iron ore (IO), cooking coal (JM) and coke (J) which are trade on Shanghai Futures Exchange (SHFE) and Dalian
Commodity Exchange (DCE) respectively. The data considers the continuous daily closing price which the prices
expressed in YUAN/Ton and the data are collected from wind database.

Figure 1 displays the daily price trend of the five black series futures from 2014 to 2020. It exhibits the similar trend
among five commodities, especially rebar (RB) and hot rolled coils (HC) showing a highly consistent co-movement, they
have almost the same trend and price. Besides, compared with iron ore (IO), hot rolled coils (HC), rebar and cooking
coal (JM) are more volatile during the sample period. In 2014, impacted by dollar index rase, global commodities enter
bear market and impact by the insufficient domestic demand and overcapacity in the steel industry, the Platts 62% iron
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ore index slipped at the beginning of the year caused coal and steel industry varieties supply and demand imbalance.
This led the decreasing trend of steel industry and this trend continued to 2015. Then as the government strengthened
supervision of black-based futures, the market showed a slight downward trend. In 2018, trade war between US and
China began, cause panic in futures markets, futures market volatility but whole market overall is stable.

 

Figure 1 Price of Five Black Series Futures from 2014 to 2020

Preliminary Analysis
In this study, we use daily returns of futures to measure the volatilities in prices. The data will be processed as log

difference:

ri,t = ln pi,t − ln pi,t−1, i = 1,2,3 . . . (15)

Where ri,t is the corresponding logarithmic return of hot rolled coils (HC), rebar (RB), iron ore (IO), coke (J) and
cooking coal (JM) at time t, pi,t , pi,t−1 is the corresponding price of futures at the time t and t-1.

Table 1 shows the descriptive statistics on daily returns of hot rolled coils (HC), rebar (RB), iron ore (IO), coke (J)
and cooking coal (JM). Coke (J) have the highest average of return while hot rolled coils (HC) return is lowest. The
standard deviation statistics of returns exhibit that iron ore (IO) is most violate, followed by cooking coal (JM), coke (J),
rebar (RB). Hot rolled coils (HC) is most stable among five markets. All skewness value of return is negative, showing
a left skew in series and the excess kurtosis value of return indicates all series are leptokurtic distribution. Besides, the
Jarque-Bera statistics reject the null hypothesis, means the returns of all series are not normal distribution, indicating
all series are peaked distributions and fat tails. By applying Ljung Box test, it evident there are serial correlation,
white noise of null hypothesis is rejected. The result of ARCH LM test reject the null hypothesis of absence ARCH
effect, prove that all return series have heteroscedasticity. Thus, the use of a GARCH-based approach is appropriate for
modeling some stylized facts such as fat tails, clustering volatility, persistence for the five black series futures returns.

Table 2 reports unit root test for the return of series. ADF test (Dickey & Fuller, 1979), PP tests (Phillips & Perron,
1988) and the KPSS test (Kwiatkowski, Phillips, Schmidt, Shin, et al., 1992) are applied. ADF test and PP test are
strongly reject the null hypothesis of existing unit root whereas KPSS accept the null hypothesis of series is stationary.
It evident all return series are stationary process.
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Table 1 DESCRIPTIVE STATISTICS FOR FUTURES RETURNS

HC RB IO J JM

Mean 0.000001 0.000047 -0.000101 0.000262 0.000197
Maximum 0.064064 0.066527 0.073636 0.091116 0.134672
Minimum -0.081322 -0.097041 -0.182879 -0.156212 -0.145089
Std.Dev 0.016364 0.017115 0.023389 0.020464 0.020675
Skewness -0.43301 -0.31023 -0.84685 -0.65444 -0.72038
Kurtosis 3.50060 3.63274 4.96344 5.32919 8.09672
JB 813.9454*** 850.1050*** 1720.252*** 1883.446*** 4228.216***
Q (12) 250.2*** 186.55*** 35.907*** 129.16*** 73.945***
ARCH LM (10) 107.83*** 85.827*** 27.553*** 79.147*** 38.851***
Note: ***indicates reject the null hypothesis of at the 1% significance level; JB refers to statistics of the Jarque-Bera test and

Q (12) is Ljung-Box Q statistic of return with 12 lags.

Table 2 UNIT ROOT TEST FOR RETURN OF FIVE BLACK FUTURES

HC RB IO J JM

ADF -39.62088 *** -39.04276*** -36.33249 *** -38.48552*** -42.29768***
PP -39.64125*** -39.04169*** -36.32532*** -38.52221*** -42.22872***
KPSS 0.158455 0.152966 0.162878 0.147794*** 0.115867***
Note: ***indicates reject the null hypothesis of at the 1% significance level.

EMPIRICAL RESULT
Structural Breaks Detection

Firstly, we employ kappa-2 (k2) test of modified ICSS algorithm proposed by (Sansó et al., 2020) to detect the
change point in return of five black futures. The results are listed in Table 3. It shows that the hot rolled coils (HC),
rebar (RB), iron ore (IO) and cooking coal (JM) all experienced two times structural breaks while coke (J) have five
times break. As the column of breaks position shown, structural breaks happened in the similar positions in hot rolled
coils (HC), rebar (RB), iron ore (IO) and cooking coal (JM). Most structural breaks happened in black series futures
are closely related to policies and spot markets. Before 2016, the black series futures market suffered a long-term
downturn which last two years because of soft demand and excess capacity in steel market. In this stage, most steel
trading companies choose to reduce inventories. Comparing the standard deviation of hot rolled coils (HC), rebar (RB),
iron ore (IO) and cooking coal (JM), the volatility of return in these two years are relatively bigger than other periods.
The downturn status last util 2016, the supply side policy started in this year. This policy is aiming to adjust the supply
and demand structure of commodities, reduce excess capacity. As benefit from supply side policy, since the start of this
year, policy effects gradually appear, both the supply and demand sides of the steel industry formed a positive impact
on black series commodities, all black futures prices rose sharply. As can be seen from the table3, the breaks happened
in all black series market between February and April, especially in March, volatility regime produced in rebar (RB),
iron ore (IO) and cooking coal (JM). As the result of modified ICSS algorithm shown, structural breaks of coke (J)
mainly concentrate on 2016 which experienced 3 times regime. Its an extraordinary year of coke market. As table
shown, the return of coke (J) futures in this year is more volatile. In February, the government promulgated quantitative
targets for capacity reduction in steel, coke and coal industry. As the result, coal production declined and steel price
increased. This led to purchasing increased in coke. Coke as an intermediate link between coal and steel, unbalance
demand and supply resulted its price rocket, thus coke futures entered bull market this year. Accordingly, structural
breaks happened frequently in this stage. From table, we can see that several structural breaks happened in the end of
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2017. It is due to environmental protection policies which started in November of this year. Many cities have taken
measures to restrict steel production during the heating season. As supply responds lagging to changes in demand, the
black market stopped falling and rebounded. This policy also contributed a structural break to coke futures in 2018.

These change points in variance could lead to bias estimate. In order to fit volatility in black series market better,
we take structural breaks into consideration in the process of dynamic correlation detection.

Table 3 STRUCTURAL BREAKS FOR FIVE BLACK FUTURES

Series Position Period Std.

HC 467 2014.03.21-2016.02.19 0.02143
886 2016.02.20-2017.11.06 0.00021

2017.11.06-2020.05.11 0.00046
RB 477 2014.03.21-2016.03.04 0.01135

876 2016.03.05-2017.10.23 0.02312
2017.10.24-2020.05.11 0.00484

IO 476 2014.03.21-2016.03.03 0.00922
886 2016.03.04-2017.11.06 0.01200

2017.11.07-2020.05.11 0.00083
J 501 2014.03.21-2016.04.08 0.00853

532 2016.04.09-2016.05.24 0.03108
640 2016.05.25-2016.11.03 0.01240
706 2016.11.04-2017.02.13 0.01803
1165 2017.02.14-2018.12.25 0.00840

2018.12.26-2020.05.11 0.00598
JM 496 2014.03.21-2016.03.31 0.03643

921 2016.04.01-2017.12.25 0.00830
2017.12.26-2020.05.11 0.00842

Analysis of Dynamic Correlation under Structural Breaks
To estimate the dynamic correlation coefficient more accurately, the dummy variables are considered to represent

structural breaks and are incorporated into the DCC GARCH model. Table 4 shows the estimate result of DCC-GARCH
model across the black series futures. As shown in panel A of estimate result of univariate GARCH (1,1), the ARCH
and GARCH terms of all series are significant which prove that series have volatility clustering and the sum of ARCH
and GARCH terms are close to one, this indicates the return of black futures have high volatility persistent. Panel B
displays the result of DCC, the coefficients of β are relatively large which indicate that the impact of shock lasts long
across the black futures market. α and β are both positive and significance at the 1% level, it indicates the DCC model
is stationary.

Table 5 gives the basic statistical features of the dynamic correlation among return of black series futures which
include 10 pairwise statistics. Overview, there are strong linkage across the black series market. The correlation
coefficients are more than 0.5 in most pairs. On average, the correlations between hot rolled coils (HC) and iron ore
(IO), hot rolled coils (HC) and coke (J), rebar (RB) and iron ore (IO), rebar (RB) and coke (J), iron ore (IO) and coke
(J) are similar, their correlation coefficients are fluctuating around 5. At the same time, rebar (RB) and hot rolled
coils (HC) shows strong correlation between them, the highest value is over 0.9, coke and cooking coal also have high
linkage that the average correlation is 0.664996. On the contrary, the conditional correlation between hot rolled coils
(HC) and cooking coal (JM), rebar (RB) and cooking coal (JM) and coke (J) and cooking coal (JM) are relatively low,
the lowest correlation between them could be negative.

Figure 2 exhibits the time varying correlations which obtain from DCC GARCH estimates. We can see that the
within the sample interval, the correlation of all paired black futures fluctuated in a large range. Combined with the
statistics in Table 5, the gap between the maximum and minimum values of correlations coefficient could exceed 0.7
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in hot rolled coils (HC) and cooking coal (JM), rebar (RB) and cooking coal (JM). Besides, the difference between
maximum and minimum in other pairwise is over 0.5 in most cases. As the result of standard deviation terms show that
the overall dynamic correlation coefficient between futures is relatively stable, the standard deviation statistical values
are between 0.05 to 0.08. The dynamic correlation between iron ore (IO) and coke (J) is most violate. In figures, most
pairs dynamic correlation coefficients oscillate in the interval between 0.4-0.6 and 0.5-0.7, except rebar (RB) and hot
rolled coils (HC), it displays a high degree of correlation. This illustrates that the price volatility in any futures of hot
rolled coil (HC) and rebar (RB) will have a significant impact on the price of another and this volatility may spread to
the entire black futures market, triggering changes in other black futures.

Table 4 ESTIMATES RESULT OF DCC GARCH MODEL

HC RB IO J JM

Panel A: estimates of the univariate GARCH(1,1)
Const (m) -0.000095*** -0.000417*** -0.000534*** -0.000619*** -0.000197***
Const (v) 0.000000 0.000000 0.000004 0.000000 0.000000
ARCH (1) 0.082471*** 0.067016*** 0.031478*** 0.078304*** 0.081658***
GARCH (1) 0.880768*** 0.890238*** 0.958970*** 0.888299*** 0.864520***
Panel B: estimates of the DCC model
α 0.045211***
β 0.797020***
α +β 0.842231
Note: ***indicates reject the null hypothesis of at the 1% significance level.

Table 5 STATISTICS OF CONDITIONAL DYNAMIC CORRELATION

ρHC−RB ρHC−IO ρHC−J ρHC−JM ρRB−IO

Mean 0.834168 0.585283 0.584377 0.461620 0.631814
Maximum 0.945302 0.771159 0.805471 0.686647 0.796403
Minimum 0.449884 0.0713256 0.271082 -0.190650 0.237479
Std.Dev 0.0513795 0.0621740 0.0589944 0.0718531 0.0633477
Skewness -3.32083 -1.61221 -1.01166 -2.10318 -2.03999
Kurtosis 15.0389e 7.56177 3.57374 13.3379 7.42310

ρRB−J ρRB−JM ρIO−J ρIO−JM ρJ−JM

Mean 0.615153 0.498541 0.528268 0.439993 0.664996
Maximum 0.818689 0.708977 0.766083 0.643676 0.815546
Minimum 0.270951 -0.025197 0.0838300 -0.123584 0.0893369
Std.Dev 0.0580313 0.0691530 0.0717885 0.0780878 0.0760498
Skewness -1.27092 -1.67945 -1.76986 -2.07381 -3.02821
Kurtosis 4.98331 8.03248 7.55467 8.73354 13.2237
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Figure 2 Time Varying Conditional Correlations in 10 Pairwise Black Series futures

CONCLUSION
This paper examines the DCC in five black series futures market of China by employing DCC GARCH model of

Engle (2002). Specially, to decrease the possibility of volatility overestimated, we considered the structural breaks in
the GARCH process, the modified ICSS algorithm proposed by Sansó et al. (2020) are applied to detect the change
points in series. The results show that coke has the most change points, identifying the coke futures are still in the early
stage of development, the market mechanism is not mature. The black series futures market is more volatility during
2014 and 2015 and the timing of several change points corresponds to the implementation of some policies. It’s evident
that the structural breaks in black series futures of China are closely related to the commodity’s supply and demand and
also national policies. The study found that black series futures have strong correlations. Rebar and hot rolled coils
are highly dependent among all pairwise. Since coke is produced by cooking coal, the test results correspondingly
indicate that coke and coking coal futures are closely related. Besides, coking coal is not directly used in metallurgy, it
is connected by intermediate commodity coke, therefore except coke, the correlation between cooking coal and other
black series futures are relatively weak.

This study provides a better understanding of dynamic volatility transmission mechanism across the black series
futures market and can helps investors to develop arbitrage strategies and hedge operating risks. Investors should take
cautions to the policies which are related to steel, energy industry and environmental protection. Due to the strong
linkage across the black series market, investing in these futures should pay attention to diversify their portfolios to
reduce risk. Besides, the market should improve information transmission mechanism to stabilize the market and
strengthen market supervision to prevent market manipulation.
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