
International Journal of Applied and Physical Sciences
volume 5 issue 1 pp. 28-35 doi: https://dx.doi.org/10.20469/ijaps.5.50004-1

Bidirectional Enhanced Selection Sort Algorithm Technique

Ramcis N. Vilchez∗
Technological Institute of the Philippines (TIP), Quezon City, Philippines

Abstract: Sorting algorithm refers to the arranging of numerical or alphabetical or character data in statistical order
(ascending or descending). Sorting algorithm plays a vital role in searching and the field of data science. Most of the
sorting algorithms with O(n2) time complexity are very efficient for a small list of elements. However, for large data,
these algorithms are very inefficient. This study presented a remedy for the noted deficiencies of O(n2) sort algorithm for
large data. Among the O(n2) algorithms, selection sort was the subject of the study considering its simplicity. Although
selection sort is regarded as the most straightforward algorithm, it is also considered the second worst algorithm in
terms of time complexity for large data. Several enhancements were conducted to address the inefficiencies of selection
sort. However, the procedures presented in all the enhancements can still lead to some unnecessary comparisons, and
iterations that cause poor sorting performance. The modified selection sort algorithm utilizes a Bidirectional Enhanced
Selection Sort Algorithm Technique to reduce the number of comparisons and iterations that causes sorting delays.
The modified algorithm was tested using varied data to validate the performance. The result was compared with the
other O(n2) algorithm. The results show that the modified algorithm has a significant run time complexity improvement
compared with the other O(n2) algorithms. This study has a significant contribution to the field of data structures in
computer science and the field of data science.

Keywords: Sorting, selection sort, algorithm, bidirectional sorting

Received: 13 November 2018; Accepted: 22 February 2019; Published: 08 March 2019

I. INTRODUCTION
A. Background of the Study

Sorting is significant in programming as it is in our
daily life. I cannot imagine life without sorting, searching
for a transcript of records for instance in a warehouse of a
school registrar that existed for a century can be very dif-
ficult without sorting. The various applications of sorting
will never be obsolete, even with the rapid development
of technology, sorting is still very relevant and signifi-
cant. The concept of data warehousing and data mining
is something new and innovative, and yet these concepts
are still dependent with sorting algorithm.

Sorting algorithm refers to the arranging of numerical
or alphabetical or character data in statistical order (either
in increasing order or decreasing order) or lexicographical
order (alphabetical value like addressee key) [1].

Sorting algorithm performance varies on which type
of data being sorted, not easier to say that which one
algorithm is better than another. Here, the performance
of the different algorithm is according to the data being
sorted [2]. Examples of some common sorting algorithms
are the exchange or bubble sort, the selection sort, the
insertion sort, and the quick sort.

Among the sort algorithm, selection sort is the sim-
plest and very straightforward. It resembles human in-
stinct in arranging items in particular order. However,
selection sort is considered the second worst algorithm in
terms of time complexity [3, 4, 5].

The selection sort works by searching for the mini-
mum value in the list and interchanging it with the first
element. Then it looks for the second minimum value
excluding the first element which was already found dur-
ing the first pass and interchanging it with the second

∗Correspondence concerning this article should be addressed to Ramcis N. Vilchez, Technological Institute of the Philippines (TIP), Quezon
City, Philippines. E-mail: ramcis_vilchez@umindanao.edu.ph
c© 2019 The Author(s). Published by KKG Publications. This is an Open Access article distributed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.

http://crossmark.crossref.org/dialog/?doi=10.20469/IJAPS.5.50004-1&domain=pdf
https://dx.doi.org/10.20469/ijaps.5.50004-1
ramcis_vilchez@umindanao.edu.ph
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


29 Vilchez, R. N. / International Journal of Applied and Physical Sciences 5(1) 2019

element. In every step, the list is shrunk by one element
at the beginning of the list. This processing is continued
until the list becomes of size one when the list becomes
trivially sorted.

In each step, to look for the maximum value, the se-
lection sort starts from the beginning of the list. It starts
assuming the first element to be the maximum and tests
every element in the list whether the current maximum is
the maximum. If it finds a greater value, it considers that
value to be the new maximum.

B. Problem Statement
The selection sort can be the most popular sort algo-

rithm because of its simple and straightforward steps that
resemble human instinct in arranging items. However, the
procedure involved in the selection sort algorithm causes
the following identified problems:

1. Unnecessary comparisons and swapping that leads
to huge running time.

2. Unnecessary iterations due to unnecessary compar-
isons and swapping.

C. Objectives of the Study
This study aims to modify the selection sort algorithm

to improve the time complexity. Specifically, it seeks to
do the following:

1. Eliminate the unnecessary comparisons, and itera-
tions using bidirectional Enhanced Selection Sort Algo-
rithm.

2. Compare the results of the modified selection sort
with the classical selection sort and other enhanced se-
lection sort algorithms using varied data to determine
improvement in terms of execution time.

D. Significance of the Study
The result of this study can be utilized for all sorting

applications. Further, the concept presented in this study
will be a very significant contribution to the field of data
structures in computer science.

E. Scope and Delimitations
This study focuses on finding a remedy on the iden-

tified problems of the selection sort particularly on run
time complexity by modifying the selection sort algo-
rithm. The modified algorithm will then be tested using
varied data to validate the performance. The result will
also be compared with the other available classical and
modified selection sort algorithms to validate running
time complexity.

II. THEORETICAL FRAMEWORK
A. Review of Related Literature

The inefficient performance of selection sort on huge
data leads to the development of several enhancements
to improve the runtime complexity. These enhancements
have a significant improvement in the runtime complexity
of the classical selection sort. However, the procedures
presented in all these enhancements can still lead to some
unnecessary comparisons, and iterations that cause poor
sorting performance.
1) Modified double-ended selection sorting: The study
of [6] of Haryana Institute of Technology, Haryana, in-
troduces the idea of double selection sort. The sort starts
from two elements and searches the entire list until it finds
the minimum value and maximum value. The sort will ex-
change value of the first element with the minimum value
and the last element with the maximum value. It will
then select the second and the last element and searchers
for the second minimum and maximum element. The
process will continue until the list is sorted. This sorting
works better than the classical selection sort. However,
unnecessary iteration and comparison are still possible.
2) Improving the performance of selection sort using
a modified double-ended selection sorting: The idea of
[6] is also promising since it uses two elements for both
smallest and largest elements in the list and compare
each other and placing them in their respective places
in the front and rear locations. The researcher claimed
that about 25% to 35% improvement in terms of time
complexity was noted.
3) Upgraded selection sort: The study of [7] upgraded
the selection sort by searching the smallest and largest
items simultaneously and placing them on their right lo-
cations. This study was able to improve the number of
iterations of the classical selection from n-1 to n/2. How-
ever, the time complexity remains the same.
4) Improved selection sort algorithm: The concept pre-
sented in a study of [8, 9, 10] utilizes a queue to store the
locations of all values that are the same as the maximum
value. This idea is only useful if the given unsorted list is
with duplications. However, if the list is already distinct,
then the modified selection sort presented in this study is
as bad as the classical selection sort for large data.
5) Minimizing the execution time of selection sort algo-
rithm: The study of [11] on selection sort enhancement
presented the concept of dividing the array into two by
getting the mean after finding the smallest and largest
elements. The elements that are smaller or equal to the
mean are placed at the front. While all the elements larger
than the mean are placed at the rear portion, this concept



Vilchez, R. N. / International Journal of Applied and Physical Sciences 5(1) 2019 30

has a significant improvement in the time complexity.
The author claimed that for an average case scenario, the
time complexity of the modified selection sort is now
O(n) from O(n2) of that of the classical selection sort
algorithm.
6) New approach for dynamic bubble sort improvement:
The approach presented in the study of [12] utilizes a
stack to store the previous largest element to eliminate
the unnecessary comparisons in the classical bubble sort
algorithm. The succeeding iterations begin the search of
the largest from the location of the previous largest ele-
ment and not from the beginning of the array. With this
approach, significant improvement in terms of time com-
plexity was noted. For an average case scenario, the time
complexity is O(n2/4) compared to the classical bubble
sort algorithm that has an O(n2).
7) Insertion sort with its enhancement: An insertion sort
enhancement approach presented in the study of [13] uses
a bidirectional technique. For the first iteration, the first
and the last element of the array is compared. If the first
element is bigger than the last element, then the two ele-
ments are swapped. The location of the element from the
left end and the element from the right end of the array
are stored in the variables which are increased (left end)
and decreased (right end) as the algorithm progresses. In
the second iteration, two adjacent elements from the left
of the array are taken and are compared. Insertion of
elements is done if required according to the order. Then
the similar process is carried as in Insertion sort. This
approach is more efficient than the classical insertion sort
algorithm.
8) Enhanced insertion sort algorithm: Another inser-
tion sort technique presented in the study conducted by
[14] uses a bidirectional approach in sorting the list. Both
sides of the array will be sorted accordingly depending
on the sort order. If the algorithm sorts ascendingly, the
small elements are inserted into the front portion. While
the large elements are inserted in the rear portion, this ap-
proach has improved the time complexity of the insertion
sort from O(n2) to O(n1.5) for an average case scenario.
9) Enhanced bidirectional selection algorithm: An en-
hancement of Selection sort algorithm by is called En-
hanced Bidirectional Selection Sort. This algorithm will
select two values, the smallest from the front and largest
from the rear and placing them in their respective loca-
tions. The smallest will be placed in the first location
while the largest in the last location of another array thus,
reducing the number of passes by half the total number of
elements as compared with classical selection sort. The
said maximum and minimum will then be deleted from
the original list thus reducing the comparison by the factor

of two.
10) Bi-directional mid selection sort: The study of [15]
called Bi-directional mid selection sort algorithm is based
on bidirectional. However, in this enhancement of selec-
tion sort algorithm, it sorted the data by selecting (max-
imum and minimum) elements by starting to look from
the middle to both sides in the selected list by reducing
the size of the list from n to 2 with the decrement of two
in size. It has the two loops outer and inner loop. The
outer loop manages the size of the list to be processed for
searching the maximum, and minimum number and the
inner loop is for finding the smallest and various number
from the list selected by the outer loop.
11) Both ended sorting algorithm: Another enhance-
ment is both ended sorting algorithm by [16], which
claimed to be faster than the bubble and other algorithms.
This algorithm compares both ends of the grid from the
right end as well as from the left end. This enhancement
is based on the bubble sort algorithm that compares one
element from the front end with one element of the rear
end. If the front element is greater than the rear end, then
it will swap the front element with the rear element. In the
second iteration, two consecutive elements from the front
end and rear end of the array are compared. Replacing
elements is done if required according to the order. Here
four variables are taken which stores the position of two
rights elements and two left elements which are to be
sorted. This process continues until the list is sorted.
12) Bidirectional selection sort: The study of [17], in-
troduced the concept of bidirectional selection sort. Its
main idea is that successive elements are selected on both
sides of the array and are placed in their proper position.
In this technique, the sorting is done in a single pass in
two ways. That is to find the minimum element from
the list and interchange it with the first element. At the
same time, it will look for the maximum element and in-
terchange it with the last element. Bidirectional Selection
sort algorithm performs better than the classical since it
reduces the number of swaps. However, there are still
grey areas in this algorithm, since it cannot detect an al-
ready sorted list. It will continue to execute and finish the
iterations even with the existence of an already sorted list.
Thus, unnecessary comparisons, swaps, and iterations are
still possible in this improved algorithm.
13) Optimized Selection Sort Algorithm (OSSA): An-
other Selection sort enhancement from the study of [18]
called OSSA is also based on the bidirectional selection
sort. However, instead of finishing the iterations from the
beginning to the last element, the iteration not found on
the same page ends if it reaches the middle of the array.
This concept saves some iteration time as compared with



31 Vilchez, R. N. / International Journal of Applied and Physical Sciences 5(1) 2019

the classical selection sort and bidirectional selection sort.

B. Concept of the Study
The proposed modified selection sort algorithm will

be utilizing a stack to store the previous maximums or

minimums. The locations of the values are stored in the
list instead of storing the actual values.

 
unsorted list 

Apply Bidirectional 

Enhanced Selection Sort 

Algorithm Technique Stack 

Fig. 1. Modified selection sort algorithm

III. OPERATIONAL FRAMEWORK
A. Methods

The goal of this study is to identify limitations or
problems of selection sort algorithm and to find a remedy
to these problems to improve the performance of selec-
tion sort. Let us first examine how selection sort works
and determine its limitations or problems.
1) Classical selection sort algorithm: The classical se-
lection sort algorithm below works by searching for the
maximum value in the list and interchanging it with the
last element. Then it looks for the second maximum value
excluding the last element which was already found dur-
ing the first pass and interchanging it with the second to
the last element. In every step, the list is shrunk by one
element at the end of the list. This processing is continued
until the list becomes of size one when the list becomes
trivially sorted.

In each step, to look for the maximum value, the se-
lection sort starts from the beginning of the list. It starts
assuming the first element to be the maximum and tests
every element in the list whether the current maximum is
really the maximum. If it finds a greater value, it consid-
ers that value to be the new maximum.

This procedure is very easy to comprehend but has
a lot of flaws that make it the second worst sorting algo-
rithm for large items.

2) Algorithm: Selection Sort (array[], length) Here
L is the unsorted input list and length is the length of
the array. After completion of the algorithm array will
become sorted. Variable max keeps the location of the
maximum value.

Step 1. Repeat steps 2 to 5 until length=1
Step 2. Set max=0
Step 3. Repeat for count=1 to length
If (L[count]>L[max])
Set max=count End if
Step 4. Interchange data at location length-1 and max
Step 5. Set length=length-1
The procedure involved in the selection sort algo-

rithm as illustrated above causes the following identified
problems:

1. Unnecessary comparisons and swapping that leads
to huge running time.

2. Unnecessary iterations due to unnecessary compar-
isons and swapping.
3) Proposed enhancement of selection sort: To elimi-
nate unnecessary comparisons, swaps, and iterations, a
bidirectional Enhanced Selection Sort Algorithm will be
used to memorize the location of the previous maximum
(from left to right) and previous minimum (from right to
left) when the new maximum and minimum are found.
A stack is used to store the locations of the past or local



Vilchez, R. N. / International Journal of Applied and Physical Sciences 5(1) 2019 32

maximums and minimums, which can be used in later
iterations. It is guaranteed that no value in the list is larger
or smaller than the former maximum and minimum value
before the location of the former maximum and former
minimum. Thus, there is no need to go through this range.
In the next iteration, it is now safe to start looking for
the next maximum and minimum from the location of
the current maximum and minimum. This concept saves
searching time, and it works better than the other enhance-
ments in the selection sort algorithm. This enhancement
will solve problem number 1 in the enumerated identified
problems above but cannot solve number 2 and 3.

To illustrate the proposed enhancement, for exam-
ple, list 7, 15, 5, 11, 50, 10, 98, 67, 80, 19, 30 is to be
sorted. In this list, the maximum is 98, and it will be
interchanged with the last value of the list, which is 30.
On the other side, starting from the location of the second
to the last item of the list, the minimum is 5, and it will
be interchanged with the first value of the list which is
7. If the classical selection sort approach is followed, the
list will be like 7, 15, 5, 11, 50, 10, 30, 67, 80, 19, 98
after the first pass. But the fact that before finding 98, the
maximum value was 50 should be noticed, and likewise,
before finding 5, the minimum was 10. So, it is guar-
anteed that there is no value greater than 50 before the
location of 50 and likewise, no value lesser than 10 before
the location of 10 in the list. So instead of starting from
the beginning of the list, the next pass can start from the
location of 50 for the maximum and 10 for the minimum,
removing some unnecessary searches. It is also observed
that before finding 98 the maximum value was 50 and
before finding 5, the minimum was 10. So, there is no
value greater than 50 in the location range between 50
and the immediate past of the location of 98. Likewise,
on finding the minimum, there is no value lesser than 10
in the location range between 10 and the immediate past
of the location of 5.

Consequently, it is apparent that in the next iteration

it is wastage of time to look for values greater than 50
and lesser than 10 before the current location of 98 and 5
respectively. Therefore, the next iteration can start from
the current location of the value 98 for the maximum and
5 for the minimum, reducing unnecessary comparisons.
And 50, the former maximum, can be safely placed at the
immediate past location of 98 by interchanging with the
current value 10. Same with 10 the former minimum can
be safely placed at the immediate past location of 5. This
strategy leads to the list having the content 5, 11, 7, 10,
15, 19, 30, 67, 80, 50, 98 after the first iteration and now
it possesses more degree of sorting, compared to the list
generated by the classical selection sort approach.

The second iteration finds the second largest item and
looks for a larger value than 50, starting from 30. It finds
67 to be the maximum and consider 50 to be the former
maximum. Then 80 is found to be the new maximum and
67 to be the new former maximum. On the other side in
finding for the minimum, the second iteration finds the
second smallest item and looks for a lesser value than
10, starting from the location of 7. It finds 7 to be the
minimum and consider 10 to be the former maximum. By
following the same strategy, after this iteration, the up-
dated list is 5, 7, 11, 10, 15, 19, 30, 67, 50, 80, 98. In the
third iteration, a larger value than 67 is looked for starting
from the location of 50, which was the old location of the
maximum 80 in the first iteration. Likewise, a smaller
value than 10 is looked for starting at position number
11. After the third iteration, the list will be 5, 7, 10, 11,
15, 19, 30, 50, 67, 80, 98. After the 3rd iteration, the list
is already on its sorted order and after the 4th iteration,
there is no swap detected. Thus, the iteration will stop.
The proposed enhanced algorithm will be utilizing a flag
to detect an occurrence of a swap. If there was no swap
detected during each pass the iteration will stop with the
assumption that the list is already sorted. To further elab-
orate how the proposed enhancement work, consider the
illustration below.



33 Vilchez, R. N. / International Journal of Applied and Physical Sciences 5(1) 2019

 
Fig. 2. Bidirectional enhanced selection sort algorithm

4) Modified Selection Sort Algorithm (MOSSA): Here L
is the unsorted input list, and length/n is the length of an
array. After completion of the algorithm, the array will
become sorted. Variable max keeps the location of the
current maximum, while variable min keeps the location
of the current minimum.

1. Set Min=n-2
2. Repeat steps 3 to 21 while Min<>Max
3. Repeat steps 4 to 11 until length=1
4. if stack is empty push 0 in the stack
5. Pop stack and put in max
6. Set count=max+1
7. Repeat steps 8 to 9 while count<length
8.if(L[count]>L[max])
a. Push count-1 on stack
b. Interchange data at location count-1 and max
c. Set max=count
9. Set count=count+1

10. Interchange data at location length-1 and max
11. Set length=length-1
12. Set i= 0 to n
13. Repeat steps 14 to 21 while i<n
14. if stack is empty push 0 in the stack
15. Pop stack and put in Min
16. Set countmin=Min-1
17. Repeat steps 18 and 19 until countmin< i
18. if(L[countmin]<L[Min])
a. Push countmin+1 on stack
b. Interchange data at location countmin+1 and Min
d. Set min=countmin
19. Set countmin= countmin - 1
20. Interchange data at location i and min
21. Set i=i+1

IV. RESULTS
A. Sorting Performance Comparison

TABLE 1
THE NUMBER OF COMPARISONS FOR DIFFERENT SORT ALGORITHM USING A RANDOM DATA SET

Sort/Number of Elements 10 20 50 100 200

Selection Sort 45 190 1225 4950 19900
Insertion Sort 45 190 1391 5399 20473
Exchange Sort 55 210 1410 5335 20300
BESSA 41 110 495 341 1020



Vilchez, R. N. / International Journal of Applied and Physical Sciences 5(1) 2019 34

TABLE 2
THE NUMBER OF ITERATIONS FOR DIFFERENT SORT ALGORITHM USING A RANDOM DATA SET

Sort/Number of Elements 10 20 50 100 200

Selection Sort 9 19 49 99 199
Insertion Sort 9 19 49 99 199
Exchange Sort 9 19 49 99 199
BESSA 5 10 24 4 95

B. Time Complexity Comparison
TABLE 3

THE NUMBER OF ITERATIONS FOR DIFFERENT SORT ALGORITHM USING A RANDOM DATA SET

Worst Case Average Case Best Case

Selection Sort O(n2) O(n2) O(n2)
Insertion Sort O(n2) O(n2) O(n)
Exchange Sort O(n2) O(n2) O(n)
BESSA O(log n) O(n) O(n2)/2

V. CONCLUSION AND RECOMMENDATIONS
A. Conclusion

Significant improvement with regards to the time com-
plexity was noted based on the test results. The improve-
ment can be attributed to the elimination of the identified
problems from the procedure of classical selection sort.
The reduction of unnecessary comparisons using the en-
hanced bidirectional selection sort technique plays a vital
role in the significant improvement of the modified selec-
tion sort algorithm. Additionally, the utilization of a flag
to determine the already sorted list in the early iteration
significantly reduces the number of iterations. Lastly, the
employment of a distinct function reduces the number
of comparisons and iterations thus, decreases the sorting
processing time from O(n2) to O(log n) for best time
complexity.

B. Recommendations
The technique presented in this paper plays a vital

role in the significant improvement of the modified selec-
tion sort algorithm. However, a further enhancement to
simplify the complication of the modified algorithm is
recommended to improve performance.

REFERENCES
[1] G. Franceschini and V. Geffert, “An in-place sorting

with o (n log n) comparisons and o (n) moves,” in
44th Annual IEEE Symposium on Foundations of
Computer Science, Cambridge, MA,, 2003.

[2] Y. Han, “Deterministic sorting in o (n log log n) time
and linear space.” Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of Computing,
New York, NY, 2002.

[3] M. Khairullah, “Enhancing worst sorting algo-
rithms,” International Journal of Advanced Science
and Technology, vol. 56, pp. 13–26, 2013.

[4] J. Lim, H. Gilbert, K. Han, J. T. Kim, and S. Kim,
“Panelizing algorithms for free-form concrete panels
considering esthetic surfaces,” International Journal
of Technology and Engineering Studies, vol. 1, no. 3,
pp. 81–86, 2015. doi: https://doi.org/10.20469/ijtes.
40003-3

[5] S. H. S. N. Ugtakhbayar, B. Usukhbayar and
J. Nyamjav, “Detecting TCP based attacks using
data mining algorithms,” International Journal of
Technology and Engineering Studies, vol. 2, no. 1,
pp. 1–4, 2016. doi: https://doi.org/10.20469/ijtes.2.
40001-1

[6] S. Lakra and Divya, “Improving the performance
of selection sort using a modified double-ended se-
lection sorting,” International Journal of Applica-
tion or Innovation in Engineering & Management
(IJAIEM), vol. 2, no. 5, pp. 364–370, 2013.

[7] T. C. S. Chand and R. Parveen, “Upgraded selec-
tion sort,” International Journal on Computer Sci-
ence and Engineering, vol. 3, no. 4, pp. 1633–1637,
2011.

[8] J. Hayfron-Acquah, O. Appiah, and K. River-

https://doi.org/10.20469/ijtes.40003-3 
https://doi.org/10.20469/ijtes.40003-3 
https://doi.org/10.20469/ijtes.2.40001-1 
https://doi.org/10.20469/ijtes.2.40001-1 


35 Vilchez, R. N. / International Journal of Applied and Physical Sciences 5(1) 2019

son, “Improved selection sort algorithm,” Interna-
tional Journal of Computer Applications, vol. 110,
no. 5, pp. 29–33, 2015. doi: https://doi.org/10.5120/
19314-0774

[9] E. Uma, A. Kannan et al., “Self-aware message val-
idating algorithm for preventing XML based injec-
tion attacks,” International Journal of Technology
and Engineering Studies, vol. 2, no. 3, pp. 60–69,
2016. doi: https://doi.org/10.20469/ijtes.2.40001-3

[10] A. H. Al-Saeedi and O. Altun, “Binary Mean-
Variance Mapping Optimization Algorithm
(BMVMO),” Journal of Applied and Physical
Sciences, vol. 2, no. 2, pp. 42–47, 2016. doi:
https://doi.org/10.20474/japs-2.2.3

[11] M. Kumar, M. Malhotra, and D. Ahuja, “Mini-
mizing the execution time of selection sort algo-
rithm,” International Journal of Engineering and
Computer Science, vol. 6, no. 4, pp. 21–27. doi:
https://doi.org/10.18535/ijecs/v6i4.37

[12] E. A. K. Thabit and F. Bahareth, “New approach
for dynamic bubble sort improvement,” Research
Notes in Information Science (RNIS), vol. 14, pp.
245–252, 2013.

[13] M. P. K. Chhatwani, “Insertion sort with its enhance-
ment,” International Journal of Computer Science
and Mobile Computing, vol. 3, no. 3, pp. 801–806,
2014.

[14] A. S. Mohammed, Ş. E. Amrahov, and F. V. Çelebi,
“Bidirectional conditional insertion sort algorithm;
an efficient progress on the classical insertion sort,”
Future Generation Computer Systems, vol. 71, pp.
102–112, 2017. doi: https://doi.org/10.1016/j.future.
2017.01.034

[15] M. F. Umar, E. U. Munir, S. A. Shad, and M. W.
Nisar, “Enhancement of selection, bubble and inser-
tion sorting algorithm,” Research Journal of Applied
Sciences, Engineering and Technology, vol. 8, no. 2,
pp. 263–271, 2014.

[16] A. Brijwal, A. Goel, A. Papola, and J. Gupta, “Both
ended sorting algorithm & performance compari-
son with existing algorithm,” International Journal
of IT, Engineering and Applied Sciences Research
(IJIEASR), vol. 3, no. 6, pp. 4–9, 2014.

[17] P. S. V. R. M. Patelia, S. D. Vyas and N. S. Pa-
tel, “An enhanced selection sort algorithm,” Inter-
national Journal of Advanced Technology in Engi-
neering and Science, vol. 3, no. 1, pp. 153–157,
2015.

[18] S. Jadoon, S. F. Solehria, S. Rehman, and H. Jan,
“Design and analysis of optimized selection sort al-
gorithm,” International Journal of Electric & Com-
puter Sciences (IJECS-IJENS), vol. 11, no. 01, pp.
16–22, 2011.

https://doi.org/10.5120/19314-0774 
https://doi.org/10.5120/19314-0774 
 https://doi.org/10.20469/ijtes.2.40001-3 
https://doi.org/10.20474/japs-2.2.3 
https://doi.org/10.18535/ijecs/v6i4.37 
https://doi.org/10.1016/j.future.2017.01.034 
https://doi.org/10.1016/j.future.2017.01.034 

	Introduction
	Background of the Study
	Problem Statement
	Objectives of the Study
	Significance of the Study
	Scope and Delimitations

	Theoretical Framework
	Review of Related Literature
	Modified double-ended selection sorting: 
	Improving the performance of selection sort using a modified double-ended selection sorting:
	Upgraded selection sort:
	Improved selection sort algorithm:
	Minimizing the execution time of selection sort algorithm:
	New approach for dynamic bubble sort improvement:
	Insertion sort with its enhancement:
	Enhanced insertion sort algorithm:
	Enhanced bidirectional selection algorithm:
	Bi-directional mid selection sort:
	Both ended sorting algorithm:
	Bidirectional selection sort:
	Optimized Selection Sort Algorithm (OSSA):

	Concept of the Study

	Operational Framework
	Methods
	Classical selection sort algorithm:
	Algorithm:
	Proposed enhancement of selection sort:
	Modified Selection Sort Algorithm (MOSSA):


	RESULTS
	Sorting Performance Comparison
	Time Complexity Comparison

	CONCLUSION AND RECOMMENDATIONS
	Conclusion
	Recommendations


