
International Journal of Technology and Engineering Studies
volume 4 issue 6 pp. 203-210 doi: https://dx.doi.org/10.20469/ijtes.4.10001-6

Analysis of Flexural Capacity of Fiber Reinforced Concrete
Pavements

Salam Wtaife∗
University of Misan, Amarah, Iraq

Ahmed Alsabbagh
Civil Engineering Department,

College of Engineering,
University of Babylon, Hillah, Iraq

Taleb Eissa
Civil Engineering Department
Faculty of Technical Sciences,

Sabha, Libya

Emad Alshammari
University of Hail, Hail, Saudi Arabia

Alaa Shaban
Civil Engineering Department,

Engineering College,
University of Kerbala, Karbala, Iraq

Nakin Suksawang
Mechanical and Civil Engineering Department,

College of Engineering and Science,
Florida Institute of Technology, Melbourne, FL

Abstract: This paper aims to investigate and understand the effect of two different types of discrete fibers and various
volumes on the mechanical properties of concrete by using the cylinder and beam specimens. Additionally, the
excremental results were simulated by the Finite Elements Method (FEM) through the ANSYS software program. The
mechanical properties for seven cases in this study related to Fiber Reinforced Concrete (FRC) included compressive
strength, modulus of elasticity, break strength, modulus of rupture, and flexural toughness. The outcome of the study
indicated that low volume fraction of the steel and Polyvinyl Alcohol (PVA) fibers have little effect on the flexural
capacity of concrete pavement. However, steel fibers provide improvements that are more significant in toughness and
residual strength than PVA fibers. Adding 0.4 and 0.6% steel fibers to concrete pavement provided flexural toughness
up to 82 and 94 N.m, which is about 137 and 156 times, respectively. The analytical analysis by ANSYS software
provided results that are close to experimental work with a comparatively safer design.
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I. INTRODUCTION
Pavements are usually either asphalt or concrete type,

and it is playing significant to transmit the applied loads
to the foundation. In recent decades, concrete pavements
are preferred because of their low life-cycle cost, dura-
bility and low maintenance. Typically, concrete pave-
ments are a better alternative to asphalt pavements for a
highway under high traffic loads [1]. The concrete ma-
terial is considered a high strength in compression and

a weak in tension. Therefore, it needs to improve its
performance in tension and flexure states. FRC fibers
improve tension and flexural capacity of concrete by in-
creasing toughness and ductility and controlling crack
width [2, 3, 4, 5, 6, 7, 8]. In pavements or slabs on ground
applications, discrete fibers have been used for several
decades because of its ultimate increased capacity, tough-
ness, load transfer efficiency at cracks, and decrease the
crack width [9, 10, 11, 12, 13, 14].
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Steel discrete fiber the most common fiber type has
been used in concrete applications and the amount has
been utilized a range of (0.2-2.0%) [15] typically. Steel
fibers have been used within several concrete applications
such as pavements, slabs, columns, bridge decks, boxes,
tanks, industrial floors, and repair techniques [16, 17, 18].

Synthetic fibers are human-made fibers resulting
from several processes and development in the petro-
chemical field and textile industries. Synthetic fiber
types, which have been used in concrete applications, are
acrylic, aramid, carbon, nylon, polyester, polyethylene,
and polypropylene [19, 20]. Among the many kinds of
discrete synthetic fibers utilized in concrete applications,
PVA fiber is a relatively new inclusion. PVA is devel-
oped by polyvinyl acetate that is hydrolyzed by treating
an alcoholic solution with aqueous acid [21, 22]. This
study aims to determine the flexural capacity of concrete
pavements with different content of PVA or steel discrete
fibers. Also, simulation of the excremental results by
FEM through using the ANSYS software program.

II. BEHAVIOR OF FRC

The FRC response under compressive stress, which is
prepared from the compressive test, shown in Fig. 1a. The
first portion of the curve presents the elastic stage, and
the slope of that portion presents the modulus of elasticity
(E). The peak point of the curve presents the compression
strength of concrete (fc’) and peak strain (εc). The end of
the curve presents the break strength and ultimate strain
at failure (εu). The FRC response under flexural stress
is shown in Fig. 1b. The first flexural parameter is the
flexural capacity, which is called the Modulus of Rup-
ture (MOR). MOR presents a primary design input and
is the maximum strength of concrete before the failure
happens. The second flexural property is the Flexural
Toughness (FT), which is concrete’s ability to absorb
energy and plastically deform without fracturing. The
concrete’s toughness is a very important characteristic for
all concrete mixtures, which are increased significantly by
adding fibers. Even though toughness is not a design pa-
rameter, it indicates useful data since it contributes to load
transfer across cracks. All those parameters determine as
explained in the testing procedure sections.

 
Fig. 1. Behavior of FRC under: a. Compression stress, and b. Flexural stress.

III. ANALYTICAL ANALYSIS

Concrete is composed of inhomogeneous and
anisotropic materials; therefore, it is complicated to
model. In this study, ANSYS 14 workbench [23] is used
to simulate the experimental works. Solid65 is used for
the 3-D modeling of solids with or without reinforcing
bars (rebar) and reinforced composites. The solid has the
capability of cracking in tension and crushing in com-
pression. The element has eight nodes with having three
degrees of freedom at each node. Also, there are transla-
tions in the nodal x, y, and z directions.

IV. EXPERIMENTAL PROGRAM
A. Testing Procedures

The experimental testing program involved perform-
ing three different tests for seven cases of concrete mix-
tures, including [24, 25, 26, 27]. Table 1 summarizes
laboratory testing methods, and types and sizes of testing
specimens utilized in the experimental work.
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TABLE 1
SUMMARY OF EXPERIMENTAL TESTING METHODS AND SPECIMENS

Testing Type Testing Methods Dimensions (mm) Calculated Parameters
Compressive Strength ASTM C39 Cylinder (100×200) Compression Strength (fc’)
Modulus of Elasticity ASTM C469 Cylinder (100×200) Modulus of Elasticity (E)
Flexural Strength ASTM C78 Prism(150×150×560) MOR
Flexural Performance ASTM C1609 Prism (150×150×560) FT

B. Material Properties

Seven different mixtures consisted of cement, sand,
aggregate, water, and discrete fibers as shown in Table 2.

All mixtures had the same water-to-cement (w/c) ratio of
0.45, and the maximum aggregate size was 19.0 mm. The
properties of PVA and steel discrete fibers were used in
the experimental work listed in Table 3.

TABLE 2
SUMMARY OF MIX PROPORTIONS (% BY VOLUME).

Case Cement Water Sand Aggregate Fiber (P: PVA & S: Steel)
Plain 12.8 18.1 28.0 40.1 0
0.1% PVAFRC 12.8 18.1 27.0 40.0 0.04P
0.3% PVAFRC 12.7 18.0 27.9 39.9 0.12P
0.5% PVAFRC 12.7 18.0 27.9 39.9 0.2P
0.75% SFRC 12.7 18.1 27.9 39.9 0.3S
1.0% SFRC 12.7 18.0 27.8 39.7 0.4S
1.5% SFRC 12.6 17.9 27.8 39.4 0.6S

TABLE 3
PROPERTIES OF DISCRETE FIBBERS

Fiber Configuration Specific Length, Diameter, Tensile Flexural
Type Gravity mm. mm. Strength, MPa Strength, GPa
PVA Monofilament 1.3 0.25 0.001 1655 38
Steel Mono Cold Drawn 7.8 1.5 0.035 1138 200

V. RESULTS OF EXCREMENTAL WORKS

A. Results of Compression Tests

Fig. 2 shows the compression strength of plain,
PVAFRC, and SFRC. For both fibers, the general trend of
the compression strength shows an increase in its value

with the increase of the fiber dosage. The addition of the
PVA fibers to concrete increases the compression strength
by more than 9, 12, and 15% at 0.04, 0.12, and 0.2% con-
tents, respectively. Steel fibers also improve compression
strength by more than 23, 30, and 41% at 0.3, 0.4, and
0.6% contents, respectively.

 

0
5

10
15
20
25
30
35
40
45
50
55
60

Plain 0.04% PVA 0.12% PVA 0.2% PVA 0.3% Steel 0.4% Steel 0.6% Steel

C
o

m
p

re
ss

iv
e

 S
tr

e
gt

h
, 

M
p

a

Fiber Content, %

Fig. 2. Effect of fiber content on the compressive strength of concrete
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Fig. 3 shows the modulus of elasticity of plain, PVA
FRC, and steel FRC as a function of fiber content. From
the Figure, it is noticeable that the addition of the fibers
to concrete decreased the modulus of elasticity of the
concrete. There was no specific correlation between fiber
dosage and the modulus of elasticity. All the results of

compressive strength and modulus of elasticity agreed
with the results of the study of [28]. Fig. 4 shows the
effect of discrete fiber on the break strength. The addi-
tion of PVA and steel fibers slightly increased the break
strength of the plain concrete, which led to preventing the
sudden failure of concrete structures.
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Fig. 3. Effect of fiber content on the modulus of elasticity of concrete
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Fig. 4. Effect of fiber content on the compressive strength of concrete

The impact of type and content of discrete fiber on
the stress-strain curve of the concrete under compression
stress are shown in Figures 5 and 6. Clearly, adding fiber
to plain concrete changes failure response from brittle to

ductile. Adding 0.2% PVA increases the ultimate strain
by more than 40%. Using 0.6% of steel fibers within
concrete includes improved the ultimate strain by more
than 60%.

 
Fig. 5. Compressive stress-strain curve of PVAFRC
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Fig. 6. Compressive stress-strain curve of SFRC

B. Results of Flexural Tests

The impact of the content of each fiber type on flex-
ural properties of concrete has been found to correlate
very well with the results of the experimental work pre-
sented. Fig. 7 and 8 summarize the load-deflection data

of the flexural test of plain, PVA FRC, and steel FRC,
which were used to determine the flexural parameters. It
is noted that increasing fiber content improved the state
of concrete failure from brittle to ductile material. Fur-
thermore, the steel fibers improve concrete ductility of
plain concrete more than PVA.

 

Fig. 7. Flexural load-deflection curve of PVAFRC

 

Fig. 8. Flexural load-deflection curve of SFRC

The results of the flexural capacity are presented in
Fig. 9. Clearly, discrete fibers have been found to have
little impact on flexural capacity since the fiber role starts

after concrete matrix cracks, which does not take into
account the formula of MOR. Fig. 10 shows the flexural
toughness results, which were conducted from the load-
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deflection curve of FRC under flexural stress. All fiber
types and dosages more than 0.3% increase the FT when
compared to the plain concrete, but the degree of improve-

ment varied significantly. Adding 1.0 and 1.5% of steel
fiber increased the flexural toughness of plain concrete by
factors of 137 and 156 times, respectively.

 

0
1
1
2
2
3
3
4
4
5
5
6
6

Plain 0.04% PVA 0.12% PVA 0.2% PVA 0.3% Steel 0.4% Steel 0.6% Steel

Fl
e

xu
ra

l C
ap

ac
it

y,
 M

p
a

Fiber Content, %

Fig. 9. The flexural capacity of FRC
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Fig. 10. The flexural capacity toughness of FRC

VI. RESULTS OF ANALYTICAL WORKS
ANALYSIS

In this section, a non-linear FEM by incorporating
the maximum tensile stress and maximum displacement
of the plain, PVAFRC, SRFC obtained was developed

to compare the results of experimental works with FEM
results as shown in Table 4. Figures 11 and 12 show the
analytical analysis of the experimental work by ANSYS.
From these results, it was noted that the maximum com-
puted tensile stresses and maximum displacements using
FEM tend to underestimate the actual stress.

 

Fig. 11. ANSYS results of PVAFRC, a. Deformation, and b. Stress.
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Fig. 12. ANSYS results of SFRC, a. Deformation, and b. Stress

TABLE 4
COMPARISON BETWEEN EXPERIMENTAL AND ANALYTICAL WORKS

Fiber Type Displacement, mm Max. Tensile Stress, Mpa
ANSYS Experimental ANSYS Experimental

PVA 0.59 0.66 3.8 4.0
Steel 1.37 1.70 6.6 7.2

VII. CONCLUSION AND
RECOMMENDATIONS

Based on the observed test results, the following con-
clusions can be drawn:

1. Fiber type and content have a significant effect on
compressive strength, compressive break strength, flexu-
ral toughness, and flexural deflection of FRC.

2. Steel fibers provide more significant improvements
in toughness and residual strength than synthetic fibers,
and both parameters are proportional to dosage rate for
any fiber used.

3. Steel and PVA discrete fibers have been found to
have little effect on flexural capacity (modulus of rupture)
of concrete.

4. Flexural toughness presents a good indicator of the
improved flexural performance of FCR.

5. Adding 0.4 and 0.6% steel fibers to concrete pro-
vided flexural toughness up to 82 and 94 N.m, which is
about 137 and 156 times, receptively.

6. The analytical analysis by ANSYS software pro-
vided underestimate the actual tensile stresses and dis-
placements.
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