

Key Knowledge Generation
Publication details, including instructions for author and

Subscription information:

http://kkgpublications.com/technology/

Using Deterministic Genetic Algorithm to Provide

Secured Cryptographic Pseudorandom Number

Generators

AMANIE HASN ALHUSSAIN

Peoples' Friendship University of Russia

Published online: 15 August 2015

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
Publisher: KKG Publications

To cite this article: A. H, Alhussain, “Using deterministic genetic algorithm to provide secured cryptographic pseudorandom

number generators,” International Journal of Technology and Engineering Studies, Vol. 1, no. 4, pp. 106-115, 2015.

DOI: https://dx.doi.org/10.20469/ijtes.40001-4

To link to this article: http://kkgpublications.com/wp-content/uploads/2015/12/IJTES-40001-4.pdf

KKG Publications makes every effort to ascertain the precision of all the information (the “Content”) contained in the publications

on our platform. However, KKG Publications, our agents, and our licensors make no representations or warranties whatsoever as

to the accuracy, completeness, or suitability for any purpose of the content. All opinions and views stated in this publication are

not endorsed by KKG Publications. These are purely the opinions and views of authors. The accuracy of the content should not be

relied upon and primary sources of information should be considered for any verification. KKG Publications shall not be liable for

any costs, expenses, proceedings, loss, actions, demands, damages, expenses and other liabilities directly or indirectly caused in

connection with given content.

This article may be utilized for research, edifying, and private study purposes. Any substantial or systematic reproduction,

redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly verboten.

http://kkgpublications.com/technology/
https://dx.doi.org/10.20469/ijtes.40001-4
http://kkgpublications.com/wp-content/uploads/2015/12/IJTES-40001-4.pdf
http://crossmark.crossref.org/dialog/?doi=10.20469/IJTES-40001-4&domain=pdf

 International Journal of Technology and Engineering Studies IJTES

 Vol, 1, no. 4, pp. 106-115, 2015

© 2015 The Author(s). Published by KKG Publications. This is an Open Access article distributed under Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

USING DETERMINISTIC GENETIC ALGORITHM TO PROVIDE SECURED

CRYPTOGRAPHIC PSEUDORANDOM NUMBER GENERATORS

AMANIE HASN ALHUSSAIN

Peoples' Friendship University of Russia

Keywords:

Genetic Algorithm

Pseudorandom Number Generators

Deterministic Approach

Period

Graphical Test

Statistical Test

Frequency Test

Runs Test

Autocorrelation Test

Entropy.

Received: 04 August 2015

Accepted: 02 October 2015

Published: 05 December 2015

Abstract. This research shows a method of providing Pseudorandom Number Generator (PRNG) without the

properties of periodicity and predictability, i.e., secured cryptographic PRNG, by using a deterministic genetic

algorithm. PRNGs are so important in cryptography. Their main advantages of PRNGs are speed, efficiency, and

reproducibility. This article studies the properties of uniformity, randomness, and independence between two

sequences of random numbers. The first sequence is generated by using a traditional pseudorandom number

generator (PRNG). In contrast, the second one is generated with the help of a cryptographic pseudorandom number

generator, which is modified by a genetic algorithm (GA). This work shows the graphical and statistical tests:

frequency test, runs test, Autocorrelation test, and entropy. The tests are performed and implemented with the help

of three programs: MATLAB, Minitab, and IBM SPSS Statistics. This statistical study has shown that the proposed

deterministic GA improves the random numbers generated by conventional PRNG, i.e., it provides secured

cryptographic pseudorandom number generators.

NTRODUCTION

The problem of generating random numbers on

electronic computers existed a long time ago, but with the

development of cryptography, it received an additional interest.

The need of deterministic random numbers in cryptography is

increased; they can be applied in establishing session keys, private

keys, and asymmetric schemes, when signing documents, secret

sharing schemes and key generation.

There are two types of random number generators – true

and pseudo. The fundamental difference between the two types is

that the true random number generators sample is a source of

entropy whereas pseudorandom number generators (PRNGs)

instead use a deterministic algorithm to generate numbers [1].Each

of them has its advantages and disadvantages. Generally the

limitation of one type is the advantage of the other.

True random number generators do not exhibit

periodicity, and in them there is no dependence between the

generated numbers; however, their main disadvantages are being

expensive, slow, inefficient, and that a sequence of numbers

cannot be reproduced. Pseudo-random number generator (PRNG)

is fast, efficient and reproducible; however, their main

disadvantages are

the periodicity and predictability of random numbers based on

knowledge of previous sequences; this leads to a low level of

security when used in cryptography [2].

20 7 357

Fig. 1. The length of the period, which is generated by the linear

congruential generator, is equal to 1

*Corresponding author: Amanie Hasn Alhussain E-mail: amanie-alhussain@hotmail.com

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:amanie-alhussain@hotmail.com

2015 Int. J. Tec. Eng. Stud. 107

Any pseudorandom number generator (PRNG) would be

always sooner or later "loop", i.e. the numbers form a loop which

is repeated an infinite number of times. Repeating the cycle is

called the period [2,3]. The length of the period in the sequence

has different values. For example, it can be just one value, as

shown in fig.1 and fig.2; or it may be two values, as shown in fig.3

and fig.4 etc...

1

Fig. 2. The length of the period, which is generated by Blum-Blum-Shub Generator, is equal to 1.

7 20020 307 100

Fig. 3. The length of the period, which is generated by Quadratic Congruential generator, is equal to 2

108 A. H. Alhussain – Using Deterministic 2015

1 16

Fig. 4. The length of the period, which is generated by Quadratic Congruential generator, is equal to 2

Many ciphers like the Vernam cipher, XOR [4], Vigenère and the

others require a lot of keys [6]. A significant disadvantage of these

ciphers is where to store a huge amount of keys and how to move

them [7,8]. To overcome these shortcomings, they use

pseudorandom number generators. Fig. 5 shows the schema of

XOR encryption algorithm. This schema shows clearly the main

role that PRNG plays.

Fig. 5. Schema of XOR encryption

The main purpose of this paper is showing how to

increase the security level of pseudorandom number generators by

deleting the properties of periodicity and predictability which

leads to increasing the security level of ciphers that depend on

these PRNG, like XOR encryption [4].

The rest of the paper is organized as follows: 1st section

displays the proposed genetic algorithm that is used to improve the

randomness properties of PRNG, the 2nd presents the graphical test

of the proposed PRNG, the 3rd section shows the statistical tests of

the proposed method, the conclusion concludes the paper [3].

THE PROPOSED GENETIC ALGORITHM

The proposed genetic algorithm has the following features and

operators:

1) The representation of chromosome in the proposed method is

binary (0 or 1).

2) The length of the chromosome should be defined by the user,

(i.e. dynamic length, this gives an extra level of security for

the generators).

3) The size of the population should be defined by the user, (i.e.

dynamic length, this gives an extra level of security for the

generators).

2015 Int. J. Tec. Eng. Stud. 109

4) Genetic operations: crossover and mutation.

 Crossover: the type of crossover is one-point crossover

according to the selected size of the chromosomes.

 Mutation: invert deterministically some of selected "genes" to

avoid repeating numbers. (Convert 0 into 1 or vice versa).

The chosen crossover in the proposed method included five types,

as follows:

Crossover Diagonal Left and Right

 Cross diagonally the first part of the first chromosome

with the second part of the second chromosome and the second

part of the first chromosome with the first part of the second

chromosome.

1 2

1 2

crossover

2

2 1

1

Crossover Vertical Right

 Cross vertically the second part of the first

chromosome with the second part of the second chromosome.

1 2

1 2

crossover

1

1

2

2

Crossover Vertical Left

 Cross vertically the first part of the first chromosome

with the first part of the second chromosome.

1 2

1 2

crossover

1

1

2

2

Crossover Diagonal Right

 Cross diagonally the second part of the first chromosome

with the first part of the second chromosome.

1 2

1 2

crossover

1

2 2

1

Crossover Diagonal Left

 Cross diagonally the first part of the first chromosome

with the second part of the second chromosome.

110 A. H. Alhussain – Using Deterministic 2015

1 2

1 2

crossover

2

1 1

2

If the crossover type would be applied sequentially, the

generated sequence of PRNG would include period, i.e. the

applying of the crossover, it should not be in order;

The algorithm must be written and designed so that it cannot be

predictable (containing period) but reproducible. Therefore, the

proposed genetic algorithm is designed to use all types of

crossover in disorder. This is done by using the following

equation:

 Type of crossover = (the order of chromosome1 in

population + the order of chromosome2 in population + the order

of population which contains crossed chromosomes) mod 5.

 If the type of crossover = 1, apply crossover diagonal left

and right.

If the type of crossover = 2, apply crossover diagonal left.

If the type of crossover = 3, apply crossover diagonal right.

If the type of crossover = 4, apply crossover vertical right.

If the type of crossover = 0, apply crossover vertical right.

Fig.6 shows the schema of the proposed genetic algorithm.

Start

Create the initial generation using

PRNG (with the length of the size of

generation)

Select of two chromosomes

consecutively

Choose one type of

crossover

Mutation if necessary

Formation of a new generation

Stop

stop conditions

(the maximum number of

generations)

Yes No

Results

Convert each generated number into binary representation

(with the length of the size of the chromosomes)

saving the new generation

achieving size generation

No

Yes

 initial generation =new generation

Fig. 6. The scheme of the proposed genetic algorithm

GRAPHICAL TEST

The following tests are applied by using Linear

Congruential generator with the parameters: Multiplier=7,

increment=10, modulus=988, initial value=7, generation

size=100. Graphical comparison between the two sequences of

Linear Congruential Generator before and after using genetic

algorithm, and plotted by MATLAB, is shown in fig.7 and fig.8:

2015 Int. J. Tec. Eng. Stud. 111

 Fig. 7. The sequence generated by linear congruential generator without using GA

Fig. 8. The sequence generated by Linear Congruential Generator using GA

Histogram Comparison

 Histogram comparison between two sequences of Linear

Congruential Generator before and after using genetic

algorithm, and plotted by Minitab program, is shown in fig.9 and

fig.10:

Fig. 9. The Histogram of Linear Congruential Generator without Using GA

112 A. H. Alhussain – Using Deterministic 2015

Fig. 10. The histogram of Linear Congruential Generator using GA

STATISTICS TEST

 This paper highlights three properties uniformity,

independence and randomness. The first test uses uniformity, the

second and third ones test independence, while the fourth tests the

randomness.

1. Frequency test

2. Runs test

3. Autocorrelation test

4. Entropy.

Frequency Test

 The frequency test is a test of uniformity. It is applied by

using Kolmogorov-Smirnov test which measures the agreement

between the distribution of a sample of generated random numbers

and the theoretical uniform distribution.

Null and Alternative Hypothesis

H0: data follow a normal distribution, H1: data do not follow a

normal distribution, Significance level: α = 0.01.

Applying Kolmogorov-Smirnov test on the sequence of

numbers which is generated by Linear Congruential Generator

without using GA, and tested by Minitab program is shown in

fig.11:

Fig. 11. Kolmogorov-Smirnov test of Linear Congruential Generator without Using GA

2015 Int. J. Tec. Eng. Stud. 113

 The test concludes: p < α=0.010 then we reject the null

hypothesis that the data follow a normal distribution, and accept

the alternative hypothesis H1 that data do not follow a normal

distribution.

 (P-value (the probability value) is the value p of the

statistics used to test the null hypothesis. If p < α then we reject the

null hypothesis).

 Applying Kolmogorov-Smirnov test on the sequence of

numbers generated by PRNG using GA, and tested by Minitab

program is shown in fig 12:

Fig. 12. Kolmogorov-smirnov test of Linear Congruential Generator using GA

 The test concludes: (P=0.049) > (α=0.010) then we

accept the null hypothesis that data follow a normal distribution.

Runs Test

 Runs test tests the number of runs above and below some

constant (usually the mean). The test involves counting the actual

number of occurrences of runs of different lengths and comparing

these counts with the expected values using a Chi-square. The runs

test examines the arrangement of numbers in a

sequence to test the hypothesis of independence.

Null and Alternative Hypothesis

H0: the sequence was produced in a random manner, H1: the

sequence was not produced in a random manner. Significance

level: α = 0.01.

 Applying runs test on the sequence of numbers which is

generated by Linear Congruential Generator without using GA,

and tested by Minitab program is shown in fig 13:

Fig. 13. Runs test of Linear Congruential Generator without using GA

 The test concludes: (p =0.000) < (α=0.010) then we

reject the null hypothesis that the sequence was produced in a

random manner, and accept the alternative hypothesis H1 that the

sequence was not produced in a random manner.

 Applying runs test on the sequence of numbers generated

by PRNG using GA, and tested by Minitab program is shown in

fig 14:

114 A. H. Alhussain – Using Deterministic 2015

Fig. 14. Runs test of Linear Congruential Generator using GA

 The test concludes: (p =0.048)> (α=0.010) then we

accept the null hypothesis that the sequence was produced in a

random manner.

Autocorrelation Test

 The tests for auto-correlation are concerned with the

dependence between numbers in a sequence. It can be used to

detect non-randomness in data. It is a mathematical tool for

finding repeating patterns, such as the presence of a periodic

signal.

Null and Alternative Hypothesis

H0: ρ = 0 (The null hypothesis states there is no relationship

between the two sequences of numbers).H1: ρ ≠ 0(alternative

hypothesis states that there is relationship between the two

sequences of numbers): ρ denotes the correlation coefficient of the

population.

Significance level: α = 0.01. Applying autocorrelation test by

Minitab program on the variables of Linear Congruential

Generator without GA, and with GA is shown in fig.15:

Fig.15. Auto-correlation test of two sequences (Linear Congruential Generator with and without GA)

 The test concludes: (P-value=0931) > (α=0.010) then we

accept the null hypothesis (ρ = 0):i.e. there is no relationship

between the two sequences of numbers. r=-0.009 which indicates

that there is no relationship between the two variables or the

generated sequences of numbers by returning to the table

illustrated in [5].

Entropy Test

 The entropy as a measurement has the concept of

disorder or unpredictability of the information elements. The

higher it is, the more chaotic, unpredictable and redistributed the

information is.

 Comparison of the results of applying the entropy as a

measure of randomness, demonstrated by MATLAB package on

the sequence of a Linear Congruential generator without the use of

a genetic algorithm is shown in fig.16 and using a genetic

algorithm is shown in fig. 17.

Fig. 16. The entropy as a measure of randomness of linear congruential generator without using GA

2015 Int. J. Tec. Eng. Stud. 115

Fig. 17. The entropy as a measure of randomness of linear congruential generator using GA

 From the entropy test in Figure 16 and 17 it is concluded

that (the entropy of a linear congruential generator without the use

of GA = 1.58) < (entropy of a linear congruential generator with

GA = 6.37). I.e. the sequence of linear congruential generator with

GA is more chaotic and unpredictable than the sequence without

using GA.

CONCLUSION AND RECOMMENDATIONS

 This paper demonstrates the ability to generate secured

cryptographic pseudorandom number generators using a genetic

algorithm, which is aperiodic and reproducible.

This statistical study has shown that the proposed deterministic

genetic algorithm, improves the random numbers which are

generated by conventional pseudorandom number generator

(PRNG), i.e. it provides secured cryptographic pseudorandom

number generators.

This sequence, which is generated using secured cryptographic

pseudorandom number generators, satisfies the following

important properties:

 provides uniformity: a sequence of normally distributed (in

accordance with the test of frequency)

 Ensures independence: confirmed for a sequence of randomly

distributed (in accordance with the runs test) and shows no

correlation between the elements of the sequence (according

to autocorrelation test).

 Improves the randomness (in according with the entropy test).

Declaration of Conflicting Interests

 There are neither financial nor non-financial conflicts

involved in carrying out this work.

REFERENCES

[1] C. Kenny and K. Mosurski, Distributed Systems Group-Random Number Generators: An Evaluation and Comparison of

Random. org and Some Commonly Used Generators. Trinity College Dublin, 2005.

[2] H. Al-Hussain and V. L. Stefanuk, “Improvement of randomness level of pseudorandom number generators in cryptography,”

in 2nd International Scientific Conference on Theoretical and Applied Sciences, pp. 172-177. US, Cibunet Publishing, New

York, USA, 2015.

[3] H. Al-Hussain and V. L. Stefanuk, “Using Genetic Algorithm to improve periodic level of pseudorandom number generators,”

in 1st European Conference on Informational Technology and Computer Science: East West, pp. 25-34, Vienna, Austria, 2015.

[4] H. Al-Hussain and V. L. Stefanuk, “Using deterministic genetic algorithm to increase the security level of XOR encryption,”

«Приоритеты мировой науки: эксперимент и научная дискуссия»: Материалы VIII международной научной

конференции: CreateSpace ,с. 15-18,17-18 июня г. – Южная Каролина, Северный Чарльстон, США, 2015.

[5] “Statistics How to Statistics for the Rest of Us.”

 http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/

[6] I. Cicek, A. E. Pusane, and Dundar, G. “A novel design method for discrete time chaos based true random number generators,

“Integration, vol. 47, no. 1, pp. 38-47, 2014.

[7] G. Chen, “Are electroencephalogram (EEG) signals pseudo-random number generators?” Journal of Computational and Applied

Mathematics, vol. 268, pp.1-4, 2014.

[8] A. Beirami, and H. Nejati, “A framework for investigating the performance of chaotic-map truly random number generators.”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 7, pp.446-450, 2013.

[9] O. Reyad, and Z. Kotulski, “On pseudo-random number generators using elliptic curves and chaotic systems.” Applied

Mathematics & Information Sciences, vol. 9, no. 1, p.31-35, 2015.

— This article does not have any appendix. —

http://www.statisticshowto.com/how-to-compute-pearsons-correlation-coefficients/

