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Abstract. This research shows a method of providing Pseudorandom Number Generator (PRNG) without the 

properties of periodicity and predictability, i.e., secured cryptographic PRNG, by using a deterministic genetic 

algorithm.  PRNGs are so important in cryptography. Their main advantages of PRNGs are speed, efficiency, and 

reproducibility. This article studies the properties of uniformity, randomness, and independence between two 

sequences of random numbers. The first sequence is generated by using a traditional pseudorandom number 

generator (PRNG). In contrast, the second one is generated with the help of a cryptographic pseudorandom number 

generator, which is modified by a genetic algorithm (GA). This work shows the graphical and statistical tests: 

frequency test, runs test, Autocorrelation test, and entropy. The tests are performed and implemented with the help 

of three programs: MATLAB, Minitab, and IBM SPSS Statistics. This statistical study has shown that the proposed 

deterministic GA improves the random numbers generated by conventional PRNG, i.e., it provides secured 

cryptographic pseudorandom number generators. 

 

 

NTRODUCTION 

The problem of generating random numbers on 

electronic computers existed a long time ago, but with the 

development of cryptography, it received an additional interest. 

The need of deterministic random numbers in cryptography is 

increased; they can be applied in establishing session keys, private 

keys, and asymmetric schemes, when signing documents, secret 

sharing schemes and key generation. 

There are two types of random number generators – true 

and pseudo. The fundamental difference between the two types is 

that the true random number generators sample is a source of 

entropy whereas pseudorandom number generators (PRNGs) 

instead use a deterministic algorithm to generate numbers [1].Each 

of them has its advantages and disadvantages. Generally the 

limitation of one type is the advantage of the other.  

True random number generators do not exhibit 

periodicity, and in them there is no dependence between the 

generated numbers; however, their main disadvantages are being 

expensive, slow, inefficient, and that a sequence of numbers 

cannot be reproduced. Pseudo-random number generator (PRNG) 

is fast, efficient and reproducible; however, their main 

disadvantages are  

 

the periodicity and predictability of random numbers based on 

knowledge of previous sequences; this leads to a low level of 

security when used in cryptography [2]. 
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Fig. 1. The length of the period, which is generated by the linear 

congruential generator, is equal to 1 
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Any pseudorandom number generator (PRNG) would be 

always sooner or later "loop", i.e. the numbers form a loop which 

is repeated an infinite number of times. Repeating the cycle is 

called the period [2,3]. The length of the period in the sequence 

has different values. For example, it can be just one value, as 

shown in fig.1 and fig.2; or it may be two values, as shown in fig.3 

and fig.4 etc... 

 

1
 

Fig. 2. The length of the period, which is generated by Blum-Blum-Shub Generator, is equal to 1.
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Fig. 3. The length of the period, which is generated by Quadratic Congruential generator, is equal to 2
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Fig. 4. The length of the period, which is generated by Quadratic Congruential generator, is equal to 2

Many ciphers like the Vernam cipher, XOR [4], Vigenère and the 

others require a lot of keys [6]. A significant disadvantage of these 

ciphers is where to store a huge amount of keys and how to move 

them [7,8]. To overcome these shortcomings, they use 

pseudorandom number generators. Fig. 5 shows the schema of 

XOR encryption algorithm. This schema shows clearly the main 

role that PRNG plays. 

Fig. 5. Schema of XOR encryption

The main purpose of this paper is showing how to 

increase the security level of pseudorandom number generators by 

deleting the properties of periodicity and predictability which 

leads to increasing the security level of ciphers that depend on 

these PRNG, like XOR encryption [4]. 

The rest of the paper is organized as follows:  1st section 

displays the proposed genetic algorithm that is used to improve the 

randomness properties of PRNG, the 2nd presents the graphical test 

of the proposed PRNG, the 3rd section shows the statistical tests of 

the proposed method, the conclusion concludes the paper [3]. 

 

THE PROPOSED GENETIC ALGORITHM 

The proposed genetic algorithm has the following features and 

operators: 

1) The representation of chromosome in the proposed method is 

binary (0 or 1). 

2) The length of the chromosome should be defined by the user, 

(i.e. dynamic length, this gives an extra level of security for 

the generators). 

3) The size of the population should be defined by the user, (i.e. 

dynamic length, this gives an extra level of security for the 

generators). 
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4) Genetic operations: crossover and mutation. 

 Crossover: the type of crossover is one-point crossover 

according to the selected size of the chromosomes. 

 Mutation: invert deterministically some of selected "genes" to 

avoid repeating numbers. (Convert 0 into 1 or vice versa). 

The chosen crossover in the proposed method included five types, 

as follows: 

Crossover Diagonal Left and Right 

 Cross diagonally the first part of the first chromosome 

with the second part of the second chromosome and the second 

part of the first chromosome with the first part of the second 

chromosome.

1 2

1 2

crossover

2

2 1

1

  

Crossover Vertical Right 

 Cross vertically the second part of the first 

chromosome with the second part of the second chromosome.  

 

 

1 2

1 2

crossover

1

1

2

2

 
 
Crossover Vertical Left 

 Cross vertically the first part of the first chromosome 

with the first part of the second chromosome.  

 

  

1 2

1 2

crossover

1

1

2

2

Crossover Diagonal Right 

 Cross diagonally the second part of the first chromosome 

with the first part of the second chromosome.  

 

 

1 2

1 2

crossover

1

2 2

1

 

Crossover Diagonal Left 

 Cross diagonally the first part of the first chromosome 

with the second part of the second chromosome. 
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1 2

crossover

2

1 1
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If the crossover type would be applied sequentially, the 

generated sequence of PRNG would include period, i.e. the 

applying of the crossover, it should not be in order; 

The algorithm must be written and designed so that it cannot be 

predictable (containing period) but reproducible. Therefore, the 

proposed genetic algorithm is designed to use all types of 

crossover in disorder. This is done by using the following 

equation: 

 Type of crossover = (the order of chromosome1 in 

population + the order of chromosome2 in population + the order 

of population which contains crossed chromosomes) mod 5. 

 If the type of crossover = 1, apply crossover diagonal left 

and right. 

If the type of crossover = 2, apply crossover diagonal left. 

If the type of crossover = 3, apply crossover diagonal right. 

If the type of crossover = 4, apply crossover vertical right. 

If the type of crossover = 0, apply crossover vertical right. 

Fig.6 shows the schema of the proposed genetic algorithm. 

Start

Create the initial generation using 

PRNG (with the length of the size of 

generation)

Select of two chromosomes 

consecutively

Choose one type of 

crossover

Mutation if necessary

Formation of a new generation

Stop

stop conditions

(the maximum number of 

generations)

Yes No

Results

Convert each generated number into binary representation 

(with the length of the size of the chromosomes)

saving the new generation

achieving size generation

No

Yes

 initial generation =new generation

Fig. 6. The scheme of the proposed genetic algorithm 

GRAPHICAL TEST 

The following tests are applied by using Linear 

Congruential generator with the parameters: Multiplier=7, 

increment=10, modulus=988, initial value=7, generation  

 

 

size=100. Graphical comparison between the two sequences of 

Linear Congruential Generator before and after using genetic 

algorithm, and plotted by MATLAB, is shown in fig.7 and fig.8: 
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          Fig. 7. The sequence generated by linear congruential generator without using GA  

 

 
Fig. 8. The sequence generated by Linear Congruential Generator using GA 

Histogram Comparison 

 Histogram comparison between two sequences of Linear 

Congruential Generator before and after using genetic  

 

algorithm, and plotted by Minitab program, is shown in fig.9 and 

fig.10: 

 

 
 

Fig. 9. The Histogram of Linear Congruential Generator without Using GA 
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Fig. 10. The histogram of Linear Congruential Generator using GA 

 
STATISTICS TEST 

 This paper highlights three properties uniformity, 

independence and randomness. The first test uses uniformity, the 

second and third ones test independence, while the fourth tests the 

randomness. 

1. Frequency test 

2. Runs test 

3. Autocorrelation test 

4. Entropy. 

 

 

 

 

Frequency Test 

 The frequency test is a test of uniformity. It is applied by 

using Kolmogorov-Smirnov test which measures the agreement 

between the distribution of a sample of generated random numbers 

and the theoretical uniform distribution. 

 

Null and Alternative Hypothesis 

H0: data follow a normal distribution, H1: data do not follow a 

normal distribution, Significance level:  α = 0.01. 

Applying Kolmogorov-Smirnov test on the sequence of 

numbers which is generated by Linear Congruential Generator 

without using GA, and tested by Minitab program is shown in 

fig.11:   

 

Fig. 11. Kolmogorov-Smirnov test of Linear Congruential Generator without Using GA 
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 The test concludes:  p < α=0.010 then we reject the null 

hypothesis that the data follow a normal distribution, and accept 

the alternative hypothesis H1 that data do not follow a normal 

distribution. 

 (P-value (the probability value) is the value p of the 

statistics used to test the null hypothesis. If p < α then we reject the 

null hypothesis). 

 Applying Kolmogorov-Smirnov test on the sequence of 

numbers generated by PRNG using GA, and tested by Minitab 

program is shown in fig 12:   

 

Fig. 12. Kolmogorov-smirnov test of Linear Congruential Generator using GA 

 The test concludes:  (P=0.049) > (α=0.010) then we 

accept the null hypothesis that data follow a normal distribution. 

 

Runs Test 

 Runs test tests the number of runs above and below some 

constant (usually the mean). The test involves counting the actual 

number of occurrences of runs of different lengths and comparing 

these counts with the expected values using a Chi-square. The runs 

test examines the arrangement of numbers in a  

sequence to test the hypothesis of independence.  

Null and Alternative Hypothesis 

H0:  the sequence was produced in a random manner, H1:  the 

sequence was not produced in a random manner. Significance 

level:  α = 0.01. 

 Applying runs test on the sequence of numbers which is 

generated by Linear Congruential Generator without using GA, 

and tested by Minitab program is shown in fig 13:   

 

Fig. 13. Runs test of Linear Congruential Generator without using GA 

 

 The test concludes:  (p =0.000) < (α=0.010) then we 

reject the null hypothesis that the sequence was produced in a 

random manner, and accept the alternative hypothesis H1 that the 

sequence was not produced in a random manner. 

 Applying runs test on the sequence of numbers generated 

by PRNG using GA, and tested by Minitab program is shown in 

fig 14:   
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Fig. 14. Runs test of Linear Congruential Generator using GA 

  

 The test concludes:  (p =0.048)> (α=0.010) then we 

accept the null hypothesis that the sequence was produced in a 

random manner. 

 

Autocorrelation Test 

 The tests for auto-correlation are concerned with the 

dependence between numbers in a sequence. It can be used to 

detect non-randomness in data.  It is a mathematical tool for 

finding repeating patterns, such as the presence of a periodic 

signal. 

 

Null and Alternative Hypothesis  

H0:  ρ = 0 (The null hypothesis states there is no relationship 

between the two sequences of numbers).H1:  ρ ≠ 0(alternative 

hypothesis states that there is relationship between the two 

sequences of numbers): ρ denotes the correlation coefficient of the 

population. 

Significance level:  α = 0.01. Applying autocorrelation test by 

Minitab program on the variables of Linear Congruential 

Generator without GA, and with GA is shown in fig.15: 

 
Fig.15. Auto-correlation test of two sequences (Linear Congruential Generator with and without GA) 

 

 The test concludes: (P-value=0931) > (α=0.010) then we 

accept the null hypothesis (ρ = 0):i.e. there is no relationship 

between the two sequences of numbers. r=-0.009 which indicates 

that there is no relationship between the two variables or the 

generated sequences of numbers by returning to the table 

illustrated in [5]. 

 

 

 

 

Entropy Test 

 The entropy as a measurement has the concept of 

disorder or unpredictability of the information elements. The 

higher it is, the more chaotic, unpredictable and redistributed the 

information is. 

 Comparison of the results of applying the entropy as a 

measure of randomness, demonstrated by MATLAB package on 

the sequence of a Linear Congruential generator without the use of 

a genetic algorithm is shown in fig.16 and using a genetic 

algorithm is shown in fig. 17. 

 

 
Fig. 16. The entropy as a measure of randomness of linear congruential generator without using GA 
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Fig. 17. The entropy as a measure of randomness of linear congruential generator using GA 

 From the entropy test in Figure 16 and 17 it is concluded 

that (the entropy of a linear congruential generator without the use 

of GA = 1.58) < (entropy of a linear congruential generator with 

GA = 6.37). I.e. the sequence of linear congruential generator with 

GA is more chaotic and unpredictable than the sequence without 

using GA. 

CONCLUSION AND RECOMMENDATIONS 

 This paper demonstrates the ability to generate secured 

cryptographic pseudorandom number generators using a genetic 

algorithm, which is aperiodic and reproducible. 

This statistical study has shown that the proposed deterministic 

genetic algorithm, improves the random numbers which are 

generated by conventional pseudorandom number generator 

(PRNG), i.e. it provides secured cryptographic pseudorandom 

number generators. 

This sequence, which is generated using secured cryptographic 

pseudorandom number generators, satisfies the following 

important properties: 

 provides uniformity: a sequence of normally distributed (in 

accordance with the test of frequency) 

 Ensures independence: confirmed for a sequence of randomly 

distributed (in accordance with the runs test) and shows no 

correlation between the elements of the sequence (according 

to autocorrelation test). 

 Improves the randomness (in according with the entropy test). 
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