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Abstract: The Battery Management System design is one of the most up-to-date topics of electric vehicles and alter-
native energy systems today. Battery behavior changes over time as the number of charge/discharge cycles increases
and aging effects. In order to ensure long battery life and maintain its performance, the Battery Management System
must monitor the battery status correctly. To do this, there is a need for a model that accurately expresses the battery
dynamics. In this study, three filters were used for estimation of State of Charge using electrochemical model. These
filters have been tested using 10 different drive cycle speed profiles. The results were evaluated considering the need
for filter performances to be operable on a vehicle.
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I. INTRODUCTION
In automotive applications, a battery system consists

of a battery and a Battery Management System (BMS).
The BMS includes hardware and software units that con-
trol charging and discharging to ensure safe operation.
It also performs the functions of thermal management
of the battery pack and the balancing of the voltages
of the cells. Lithium-Ion (Li-ion) batteries appear to
be the best solution when compared to other technolo-
gies with energy-weight ratios, no memory effect, low
self-discharge, and small internal resistance. The ever-
decreasing costs also make them the leading solution
candidates for automotive applications. One of the im-
portant parameters for the safe charging and discharging
of the battery is the State of Charge (SOC). The BMS
identifies the condition of the battery at the moment of
operation and ensures that it can be safely charged and
discharged at an appropriate level to improve its service
life. However, SOC measurement cannot be done di-
rectly. Instead, it must be derived by measuring battery
voltage, current, and other battery information. Accu-
rate estimation of SOC value can prevent battery dam-
age, rapid wear, and overcharging/over-discharging.

As the behavior of the battery can change over time,

its performance will also change over time. Accordingly,
it is necessary to extend the service life. To design a
BMS software algorithm, a model describing the bat-
tery dynamics is required. The main task of the BMS
software is to monitor the physical parameters while ob-
serving the condition of the battery as the battery ages.
In general, a BMS uses the equivalent circuit models
as a model. However, these models have limited abil-
ity to predict the state of the battery when compared to
electrochemical models. Voltage and current are evalu-
ated as a function of time for the analysis of the battery
condition. Processing of collected data can be done for
various purposes and in various ways. The data can be
compared with a characteristic pattern obtained experi-
mentally from the battery. Or a mathematical model can
be given as an input to describe the characteristic behav-
ior of the battery. The open circuit voltage of the bat-
tery is also tried to be calculated from this data. Ideally,
the parameters of these models are related to all the bat-
tery characteristics about the desired information. The
open circuit voltage method and the amperage counting
method can lead to incorrect evaluations due to the com-
plex and challenging operating conditions of the cars.
For example, the battery voltage may reach a stable state
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at the end of a long rest period, the open circuit voltage
should ideally be measured when the battery voltage is
stable. It is difficult for the battery pack to reach a stable
voltage condition in a short period of time, due to fre-
quent charging and discharging, large-scale changes in
current, and their effect on the battery voltage. The cor-
rect initial SOC value should be entered for the amper-
age counting method. Again, vehicle working conditions
limit this, too. The current battery condition may not be
obtained when the car is started. Electrochemical reac-
tions in the battery set also cause noise that cannot be ne-
glected to get over the data during measurement. Higher
order or full electrochemical models can predict the solid
concentration profile for electrode and electrolyte, but
long calculation times and extreme model complexity
are not suitable for real-time estimation/control appli-
cations. Reduced battery models are more suitable for
model-based applications.

II. LITERATURE REVIEW
The studies in the literature for battery models can

be grouped into four main categories. These are physical
(electrochemical), statistical, analytical, and electrical
equivalent circuit models. Statistical models are based
on extracting meaningful structures from data sample
sets rather than deriving from the basic physical data and
laws, and the parameters to be used when creating the
model [1, 2]. These models are compact and fast, but
not as accurate as physical models. Probabilistic mod-
eling is based on data interpretation similar to statistical
modeling. In these methods, the behavior of the battery
is not a specific physical process, but the parameters are
defined as a probabilistic process based on statistical re-
sults [3]. Modeling the batteries as equivalent circuits
does not yield results with sufficient accuracy. In these
types of models, there is a possibility to perform math-
ematical calculations on the model. Equivalent circuits
for charge-discharge or impedance curves are, therefore,
modeled and analyzed. Equivalent circuit models have
been used for parameter estimation in electric vehicles
[4, 5, 6, 7, 8]. If it is desired to optimize the system
by taking advantage of battery performance, it should be
used for circuit simulations with a recursive optimization
system. Such simulations take time and cannot respond
instantly. Analytical equivalent battery models are used
to avoid this situation. In this type of model, physical
and statistical approaches can be said to be put together.
The structure is based on the use of fewer parameters
obtained with experimental results in a highly simplified
physical battery model. In other words, the mathemat-
ical form of the system is derived from physical equa-

tions while the parameters are derived from “black box”
experiments [9]. Physical models are based on internal
chemical processes of batteries. In these models, the pro-
cesses inside the battery are given in detail. The advan-
tages of these models are that they are very accurate and
robust. The disadvantages are that it is difficult to con-
figure because it requires detailed information about the
battery, and it takes a long time for the calculations be-
cause it requires the solution of a large number of differ-
ential equations. In order to avoid this problem, some
assumptions were made and models of reduced order
were derived. Two electrochemical models, full-order
and reduced-order, are used in this study. The full model
is known as the Doyle-Fuller-Newman model [10]. The
reduced model is the model commonly used in the liter-
ature and experimentally validated [11, 12, 13].

III. METHODOLOGY
The study consists of four main steps. The first part

involves obtaining the scenarios necessary to evaluate
the performance of the algorithms. A total of 10 sce-
narios recommended by international organizations has
been used. In the second step, the electrochemical bat-
tery model coding is done. In the third step, three filters
have been implemented to perform SOC estimation. The
final step involves evaluating the performance of these
filters for all scenarios.

A. Electrochemical Model of the Li-ion Cell
The Li-ion battery model presented in this study is a

One-Dimensional (1D)-spatial model of the battery dy-
namics that developed along only one axis (the horizon-
tal x-axis) while neglecting the dynamics in the other di-
mensions [10, 11]. Governing equations of lithium ion
cell model are given below:
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Where ϕe is the potential of the electrode phase, and
ke f f refers to the effective ionic conductivity. The cur-
rent density is given by the Butler-Volmer electrochemi-
cal kinetic equation:
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where i0 is the exchange current density, s and c are
the anode and cathode transfer coefficients, and η is the
over potential.
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Where L is the thickness of the microcell, ce is the
Li-ion concentration in the solution phase, εe is poros-
ity, t0

+ is the number of transfer, and De f f
e is the effective

diffusion coefficient.
Solid phase:
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Where ϕs is the solid-phase potential, σ e f f is the ef-
fective conductivity, A is the plate area, and I is the ap-
plied current.
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Where cs Li-ion solid phase concentration and Ds is
solid phase diffusion coefficient.

All these partial differential equations must be solved
taking into account the boundary conditions for solid
electrodes. For this, solutions have been obtained
in MATLABő environment using the finite difference
method and simulations have been used as real battery
state values in simulations as it is the model that gives
the battery dynamics in the most accurate form.

It is impossible to use this full, i.e., non-reduced,
model to solve partial differential equations involving
many parameters, because this process is complex and

computationally expensive, it cannot be used in real-time
on the vehicle. It is compulsory to reduce the model in
real-time applications. To reduce this complexity, it is
necessary to obtain a new model by model reduction us-
ing some approximations and simplifications. In fact,
the partial differential equations in the full model are a
function of the particle’s position along the thickness of
an electrode, the radial coordinate of a particle and time,
that is, x, r, and t. These equations can be solved numer-
ically by discretization. In the reduced model, the solid
particle distribution along the electrode is neglected and
it is assumed that there is a single spherical solid particle
and the surface is scaled to the surface area of the porous
electrode. The particle represents the entirety of the se-
lected electrode, and its radius is Rs. In this model, a
single particle representing each of the anode and cath-
ode is used. This spherical particle is divided into layers
of equal thickness. A particle is divided into M-1 layers
in the range of ∆r. The net molar flow (csi) is calculated
by dividing the molar difference between the previous
and the next layer by the sphere volume (Vi).

Csi =
4Dsδ t
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(
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)2
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[
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Solid concentration is then calculated to produce the
terminal voltage at the solid electrolyte interface. The
SOC of the battery is calculated by the spherical average
concentration (cs,pavg) in the positive electrode (for the
positive electrode):

SOC = 100×
(

θpavg −θp0%

θp100% −θp0%

)
(11)

Discrete time state equations must be provided to im-
plement the estimation filters. State equations are as fol-

lows:

cs = Acs +BJLi (12)

cse =Ccs +DJLi (13)

B. Voltage and SOC Estimation

To find the current drawn from the battery and sup-
plied to the battery, the current profile must be obtained
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using the scenarios. In order to obtain the current pro-
file, the vehicle dynamics and the mechanical and elec-
trical (electric motor, inverter) parameters of the vehi-
cle must be determined. By using the vehicle speed, the
forces acting on the vehicle are calculated by means of
the specified parameters. From here, the acceleration,
torque, and current are calculated. The forces acting on
the car are calculated as follows [14, 15, 16, 17]. The to-
tal force acting on the vehicle can be expressed in terms
of the forward-moving force, that is, the sum of the push-

ing force and the forces that counteract the advance.

fkMa = Fitki −∑Fr (14)

Where, fk is a value called the mass factor, which
converts the rotational inertia of the rotating components
to an equivalent mass. M represents the mass of the vehi-
cle, and a represents the acceleration. The total counter
forces are calculated as given below. The parameters
used in the equations are given in Table 1.The parameter
values used in the simulations are given in Table 2.

∑Fr = MgCycos(θ)+
1
2

pACs(V −Vr)
2 +Mgsin(θ) (15)

TABLE 1
THE PARAMETERS USED IN THE CALCULATION OF THE FORCES ACTING ON THE VEHICLE

fk Inertial mass factor Unitless
M Vehicle mass kg
a Vehicle acceleration m/s2

g Gravitational acceleration m/s2

cy Rolling resistance of wheels Unitless
θ The slope Degree (◦)
p Air density kg/m3

A Vehicle front area m2

Cs Drag coefficient Unitless

TABLE 2
VEHICLE AND ELECTRICAL SYSTEM PARAMETERS USED IN SIMULATIONS

Vehicle mass (kg) 1200
Inertial mass factor 1.05
Drag coefficient 0.35
Vehicle front area 2.1
Wheel radius 0.315
Rolling resistance 0.015
Transmission gear ratio 7.4
Transmission efficiency (%) 95
Electric motor efficiency (%) 80
Inverter output (%) 80
Regenerative brake efficiency (%) 70

 

Fig. 1. ARTEMISROAD drive cycle speed profile

 

Fig. 2. ARTEMISROAD drive cycle current profile
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Figures 1, 2, 3, and 4 Show the Speed and Current
Profile for the ARTEMISROAD and FTPCOL Drive Cy-
cles, Respectively.

 

Fig. 3. FTPCOL drive cycle speed profile

 

Fig. 4. FTPCOL drive cycle current profile

Since the voltage measurement model is not lin-
ear, the Extended Kalman Filter (EKF), Unscented
Kalman Filter (UKF), and Smooth Variable Structure
Filter (SVSF) are used as the filters.

IV. RESULTS

In this study, for the total of 10 scenarios, the current
profile was obtained and full electrochemical model bat-
tery status values were calculated. Measurements were
then generated by adding noise to the instantaneous bat-
tery cell voltage values obtained by using the full model
for each scenario. Voltage and SOC estimation values
were obtained by running the noise measurements with
three different filters (EKF, UKF, and SVSF). In all sim-
ulations, the scenarios were run with the battery at a
charge of 67.31%. The upper voltage limit is 4.31 V and
the lower voltage limit is 3.105 V for the overcharge and
discharge protection of the battery. When the upper limit
is reached, the current input to the battery will be inter-
rupted. However, applying the lower limit may mean
cutting off the current for a vehicle in traffic. This can
lead to undesirable situations in terms of traffic safety.
On the other hand, if driving continues, the battery may
be damaged. So, the decision here is to stay the driver.
The BMS will alert the driver before reaching critical
SOC.

TABLE 3
FILTER PERFORMANCE RESULTS FOR M = 11 (EKF)

Scenario SOC Error Calculation Time (s)
ARTEMISROAD 2.01 0.0286
ARTEMISURBAN 0.66 0.0273
EUDC 2.15 0.0112
FTPCOL 2.12 0.0513
HWFET 1.97 0.0206
IM240 0.94 0.0071
NEDC 1.48 0.0311
NYCCOL 0.56 0.0155
SC03COL 0.96 0.0161
UDDS 0.85 0.0349

TABLE 4
FILTER PERFORMANCE RESULTS FOR M = 11 (UKF)

Scenario SOC Error Calculation Time (s)
ARTEMISROAD 1.37 0.0811
ARTEMISURBAN 0.55 0.0815
EUDC 1.41 0.0306
FTPCOL 1.20 0.1357
HWFET 1.55 0.0571
IM240 0.31 0.0188
NEDC 1.09 0.0861
NYCCOL 0.33 0.0462
SC03COL 0.74 0.0434
UDDS 0.76 0.0979
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As shown in Tables 3, 4, 5, the best estimation per-
formance for all scenarios was done with UKF filter. For
SOC estimation, Filters generally give relatively poor re-
sults in high-acceleration scenarios. It is observed that
the calculation time of UKF is 2 to 4 times higher than
the other two filters. All simulations were conducted us-

ing a computer with a 2.7 GHz processor and 16 GB of
memory. As can be seen in Tables 6, 7, 8, more precise
estimates are obtained when the number of discretization
steps increases. However, calculation times increase by
about 50%. In the SOC estimation, it is observed that the
SVSF and UKF filters performed better this time.

TABLE 5
FILTER PERFORMANCE RESULTS FOR M = 11 (SVSF)

Scenario SOC Error Calculation Time (s)
ARTEMISROAD 1.59 0.0280
ARTEMISURBAN 0.61 0.0248
EUDC 1.85 0.0107
FTPCOL 1.37 0.0493
HWFET 1.77 0.0186
IM240 0.55 0.0059
NEDC 1.29 0.0315
NYCCOL 0.53 0.0142
SC03COL 0.80 0.0143
UDDS 0.77 0.0324

TABLE 6
FILTER PERFORMANCE RESULTS FOR M = 21 (EKF)

Scenario SOC Error Calculation Time (s)
ARTEMISROAD 1.49 0.0328
ARTEMISURBAN 0.57 0.0304
EUDC 1.49 0.0121
FTPCOL 1.30 0.0559
HWFET 1.72 0.0246
IM240 0.36 0.0074
NEDC 1.09 0.0362
NYCCOL 0.41 0.0192
SC03COL 0.74 0.0188
UDDS 0.76 0.0411

TABLE 7
FILTER PERFORMANCE RESULTS FOR M = 21 (UKF)

Scenario SOC Error Calculation Time (s)
ARTEMISROAD 0.29 0.1413
ARTEMISURBAN 0.16 0.1319
EUDC 0.93 0.0523
FTPCOL 0.35 0.2427
HWFET 0.48 0.0909
IM240 0.57 0.0319
NEDC 0.32 0.1532
NYCCOL 0.13 0.0739
SC03COL 0.34 0.0791
UDDS 0.32 0.1802
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TABLE 8
FILTER PERFORMANCE RESULTS FOR M = 21 (SVSF)

Scenario SOC Error Calculation Time (s)
ARTEMISROAD 1.19 0.0303
ARTEMISURBAN 0.46 0.0274
EUDC 0.90 0.0126
FTPCOL 1.14 0.0571
HWFET 1.31 0.0251
IM240 0.34 0.0069
NEDC 0.80 0.0363
NYCCOL 0.25 0.0166
SC03COL 0.56 0.0174
UDDS 0.70 0.0379

V. DISCUSSION & CONCLUSION
In this study, SOC and voltage estimates were ob-

tained with three different filters for various speed pro-
files. It is seen that EKF and SVSF filters can be prefered
when considering the necessity of working in real time.
However, with the UKF, more accurate estimates have
been obtained. Estimation accuracy increases when the
number of discretization steps used in the battery model
is increased. Design should be made by making a trade-
off between calculation time and accuracy. From the re-
sults obtained, it is also evaluated that it would be ben-
eficial to provide driving advice for the driver according
to the condition of the battery.
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