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Abstract. The main focus of this study is the dynamic behavior of rotating annular disks. The Galerkin method
was used to determine the free vibration characteristics of rotating disks. In this method, the approximate function,
that satisfies the boundary conditions for the solution, is selected and replaced by the differential equation of motion.
Free vibrations of rotating disks, clamped at the inner circumference and free at the outer one, have been investigated.
Also, Campbell diagrams are created to visualize system behavior. Solution of governing differential equations of the
system is obtained by Galerkin method that includes proposing an approximate function for displacement that satisfies
the boundary conditions. Two displacement functions are selected for the solution, and the boundary conditions are
imposed to obtain the natural frequencies of the rotating disk. It is investigated how the dynamic behavior is affected
by the disk’s rotation speed in detail, and the results are visualized using Campbell diagrams drawn using dimension-
less geometric parameters. Also, the solution method is validated using the results of the related studies in the literature.

INTRODUCTION
Due to having broad field of application in industry, rotat-

ing annular plates (disks) are one of the most common research
topics in engineering. In the analysis of a disk brake squeal
problem or cutting tool performance researches, understanding
dynamical properties of a rotating disk plays a crucial role in
engineering development process. Also, with the advancing
technology, these disks are used in informatics sector to store
data. One example of application areas is hard disks.

One of the first studies on rotating disks is given by
Lamb and Southwell [1]. First nonlinear appoach is presented
by Nowinski [2] using von Karman plate theory. Hamidzadeh
[3] also worked on non-linear transverse free vibrations of
rotating disks. Another notable work area about rotating disks
is stability researches. Iwan and Moeller [4] and Yahnioglu and
Akbarov [5] conducted researches about stability of rotating
disks. They showed the unstable behavior of disk above the
critical speeds in their work. Guven [6] represented a general
solution of transverse vibrations of a rotating disk with equally
distributed strength by using hypergeometric functions. Zhou et
al. [7] applied Hamiltonian approach to investigate the natural
vibrations of rotating disks. Also, Luo and Mote [8] investi-
gated large amplitude vibrations of a storage device with a new
approach.

In the literature, analytical studies about free vibrations
of rotating disks are studied with Galerkin and Rayleigh-Ritz

methods [9], [10], [11], [12]. Barasch and Chen [13] con-
ducted a research with clamped and free boundary conditions
in inner and outer edges, respectively. Their study is based on
reduction of fourth order equation of motion to a system of
differential equations. Bashmal et al. [14] investigated in-plane
characteristics of non-rotating disks for various boundary condi-
tions by using Rayleigh-Ritz method. Also, Tufekci et al. [15]
conducted a research about transverse vibrational characteristics
of a rotating disk under different boundary conditions by using
Galerkin method. Maretic et al. [16] investigated vibrations
and stability of rotating annular disks which are consisted of
different materials under clamped and free boundary conditions
at inner and outer edges, respectively. In order to obtain exact
solution, they used Frobenius method. They also examined the
effects of parameters such as angular velocity, Young modulus,
and density on natural frequency. Renshaw [17] presented a
method which is used to increase the natural frequencies of
rotating disks via internal channels. He showed that thanks
to well-designed channels, natural frequencies can be shifted
10%-100% above by comparing with uniform ones. Nejad et al.
[18] obtained exact solution of rotating disk which is made of
Functionally Graded Materials (FGM). They gave a closed form
solution based on elasto-plastic analysis. They also studied on
the behavior of the structure in plastic region at high speeds. Liu
and Nayeb-Hashemi [19] presented a study about vibrational
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characteristics of a rotating disk which is made of FGM with
circumferential crack. They investigated effects of crack param-
eters on critical speed. Kang [20] investigated axisymmetric
oscillations of rotating annular disk with non-uniform thickness
under tensile centrifugal body force with Ritz method. After
performing classical plane elasticity approach and Ritz solution,
obtained results are compared with other studies. In terms of
experimental and numerical studies, papers by Bashmal et al.
[21] and Tufekci et al. [22] can be given as examples. Bashmal
et al. [21] conducted a research on annular disks which have
different radius rates both numerically and experimentally. In
their work, they emphasize that existence of non uniformities
in boundary conditions has important role in the interaction
between in-plane and transverse modes. Tufekci et al. [22]
presented a study on vibrational characteristics of a hard disk
both numerically and experimentally. Also, they validated their
numerical results with analytical and experimental ones.

In this study, the Galerkin method was used to deter-
mine the free vibration characteristics of rotating disks. In this
method, the approximate function, that satisfies the boundary
conditions for the solution, is selected and replaced by the dif-
ferential equation of motion. Free vibrations of rotating disks,
clamped at the inner circumference and free at the outer one,
have been investigated. Also, Campbell diagrams are created to
visualize system behavior.

EQUATIONS
The differential equation of the vibration of the rotating disk in
the coordinates connected to the disk is in the following form:
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Here, w the transverse displacement function of the disk, D
bending rigidity of the disk, E Young modulus, ν Poisson’s
ratio, σr and σϕ are the radial and tangential stresses due to the
rotation of the disk and change according to boundary condi-
tions of the disk, (r, ϕ) the coordinates fixed to the disk. For
the clamped and free boundary conditions at the inner and outer
edges, respectively, the stresses are given as follows:
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where Ω is the rotation speed of the disk, andR2, Ro are
the inner and outer radii of the disk, respectively.

The vertical displacement function of the disk accord-
ing to the stationary coordinate system in the space is in the
following form:

w(r, ψ, t) =

N∑
n=0

Rn(r)Sin(nψ − ωt) (4)

where (r,ψ) are the fixed coordinates in space and n =
0,1,2,..., N.

Fig. 1. Relationship between the coordinates fixed to disk and fixed in space
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The modes expressed by this equation are called moving
modes. ω shows the natural frequency of the disk, and n shows
the number of circumferential waves. Substituting ψ = ϕ+Ωt

into the equation, the coordinate system fixed in space can be
switched to the system attached on to the disk:

w(r, ϕ,Ωt, t) =

N∑
n=0

Rn(r)Sin(nϕ+ nΩt− ωt) (5)

w(r, ϕ, t) =

N∑
n=0

Rn(r)Sin [nϕ+ (nΩ− ω)t] (6)

If (6) is substituted into (1), the following equation is
obtained:
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sin[nϕ+ (nΩ− ω)t] = 0

(7)

For each value of n, the term sin[nϕ+ (nΩ− ω)t] may
not be equal to zero. To satisfy this equality, the expression in
parentheses must be zero.
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Here, n = 0,1,2,..., N.

GALERKIN METHOD
The Galerkin method will be used for the solution. For

this, an approximate function for the solution that satisfies
the boundary conditions should be proposed. A function that
provides boundary conditions can be selected as;

Rn(r) =

m∑
m=0

amnRmn(r) (9)
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where amn are unknown constants in the selected func-
tion for the solution Amn, Bmn and Cmn are the coefficients

that provide the boundary conditions. Also, the normaliza-
tion condition is chosen as Rmn(Ro) = 1. Substituting the
value of Rn(r) in (10) into (8) will give the following equation;
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The weighted residual must be zero. So, the following
equation can be obtained:
n = 0, 1, 2, 3, ......, N
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n = 0, 1, 2, ..., N s = 0, 1, 2, ..., M
In this equation, only the sine function is dependent on

the angular coordinate ϕ. For this reason, the integral of this
expression will be:

2π∫
0

sin [nϕ+ (nΩ− ω)t] dϕ (13)

Since this does not have to be necessarily equal to zero,
(12) can be rewritten as follows;
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n = 0, 1, 2, ..., N
s = 0, 1, 2, ..., M
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Here, it is possible to change the order of summation
and integral operations. By making this change, the following
is obtained:
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Where Asmn = amnasn.
The following abbreviations can be used to make this

expression simpler:

φsmn =
1

ρh

{
D

Ro∫
Ri

[(
d2

dr2
+

1

r

d

dr
− n2

r2

)2

Rnm

]

Rsndr − h

Ro∫
Ri

[
d

dr

(
σrr

dRmn

dr

)
− n2

r
σϕRmn

]
Rsndr

}
(16)

λn = (nΩ− τ) (17)

Γsmn =

Ro∫
Ri

RmnRsnrdr (18)

For each value of n, the equation (13) gives a set of linear
equations of dimension (M + 1) × (M + 1). If the terms φsmn

and Γsmn are used, equation becomes (17);

M∑
m=0

[
φsmn − λ2Γsmn

]
Asmn = 0 (19)

Removing the n index from the equation will make the
equation simpler.
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]
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(20)
n = 0, 1, 2,.....N
In order to find the solutions of each of system of linear

equations obtained, the determinant of the coefficients matrix
must be zero for every n. In other words, for each value of n,
the natural frequencies are obtained by letting the determinant
of 19 be zero:

det
[
φsm − λ2Γsm

]
= 0 n = 0, 1, 2, ....., N (21)

λ = nΩ− ω (22)

Equation (21) gives a polynom of λ2 with the degree of
(M + 1). Roots are obtained as λ2mn. Natural frequencies of the
rotating disk are obtained as follows:

ωmn1,2 = nΩ∓ λmn (23)

As it can be seen from this equation, a non-rotating disk
for each (m, n) value has only one frequency value. If the disk
rotates, the frequency is divided into two different values in all
other modes except n = 0 mode. These modes are called as
travelling modes. As one of the waves travels in the direction of
rotation, Forward Travelling Waves (FTW), the others travels in
the opposite direction of rotation, Backward Travelling Waves
(BTW). If the disk rotates, the natural frequencies of forward
travelling waves increase and the natural frequencies of back-
ward travelling waves decrease.

The results are given as dimensionless parameters. The
dimensionless parameters are defined as:
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Here, in order to obtain the frequency expression, the
function Rmn(r) must be determined. By using the boundary
conditions, the constants Amn, Bmn, and Cmn of the Rmn(r)

shape function will be easily determined.
The transverse displacement function of the disk given

in (6) can be expressed as:
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This function must satisfy the boundary conditions of
disk.

It is also possible to select another Rmn(r) function
which satisfies the boundary conditions of the disk as follows:
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2
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4
mn are unknown constants and

will be calculated using the boundary conditions of the disk and
the normalization condition.
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When the function of Rmn(r) is substituted into the
transverse displacement function of the disk w, the following is
obtained:

w =

N∑
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The disk is clamped at the inner circumference, free at
the outer circumference. The boundary condition at the inner
circumference; - There will be no displacement:

w
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- There will be no angle of rotation:
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Boundary conditions in the outer circumference;
- The moment value at the free edge will be zero:
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- The equivalent shear force value at the free edge will
be zero:
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Normalization condition is given by the equation below;

Rmn(Ro) = 1 (32)
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Therefore, the normalization condition will be used with
the free edge boundary conditions at the outer circle to deter-
mine the indefinite constants Amn, Bmn, and Cmn. If these
equations are written in matrix form, it will take the following
form:
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RESULTS
Natural Frequencies, Mode Shapes and Campbell
Diagrams

Fig. 2. Some mode shapes of rotating disk

After all, the calculations are performed using the above-
mentioned solution methods. The calculations yield the natural
frequencies and mode shapes of the disk rotating at various
angular velocities. Outputs of the calculations are visualized for

better understanding. For visualization, Campbell diagrams are
plotted by a program written in MATLAB and also mode shapes
are drawn using the 3D plotting tools of the same software.

Some mode shapes are given in Figure 2. In this Figure,
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mode (0, 0) is called “umbrella mode” due to not having any
nodal diameter (n = 0). Also, it can be observed that, at specific
radii, transverse displacements of points are zero for non-zero

values of nodal circle (m 6= 0).

Fig. 3. Campbell diagrams for m = 0

In order to express structural behavior more clearly,
Campbell diagrams are plotted at different speed for various
nodal circle (m) and nodal diameter (n) values. These diagrams
are shown in Figures 3-6.

The changes of the dimensionless natural frequencies
with varying dimensionless rotation speed are given in Figure
3 for m = 0, Figure 4 for m = 1, Figure 5 for m = 2 and Figure
6 for m = 3. As shown in all Figures, except for n = 0 mode,
the dimensionless frequencies are divided into two different
values for increasing dimensionless speed of rotation in all other
mode shapes. These frequencies are related to the so called
traveling modes as mentioned before. Natural frequencies of

the backward traveling modes for n 6= 0 decrease until zero with
the decreasing rotation speed. This rotation speed is called a
ritical speed. Any outer disturbance can easily initiate the reso-
nance phenomena in the disk and lead the structure to instant or
progressive fatigue failure. In Figure 3, it is to be noticed that
there are critical speeds detected in backward traveling modes
of n = 2-4 around the rotation speed of 6-7 while the critical
speed of mode 5 is around the rotation speed of 8. For higher
modes of n, the critical speeds are to be seen in much higher
rotation speeds. It is also interesting to note that the critical
speed is not observed for the mode of n = 1.

Fig. 4. Campbell diagrams for m = 1

In order to express structural behavior more clearly,
Campbell diagrams are plotted at different speed for various
nodal circle (m) and nodal diameter (n) values. These diagrams
are shown in Figures 3-6.

The changes of the dimensionless natural frequencies
with varying dimensionless rotation speed are given in Figure 3
for m = 0, Figure 4 for n = 1, Figure 5 for m = 2 and Figure 6
for m = 3. As shown in all figures, except for n = 0 mode, the
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dimensionless frequencies are divided into two different values
for increasing dimensionless speed of rotation in all other mode
shapes. These frequencies are related to the modes so called
travelling modes as mentioned before. Natural frequencies of
the backward travelling modes for n 6= 0 decrease until zero
with the decreasing rotation speed. This rotation speed is called
a “critical speed”. Any outer disturbance can easily initiate
the resonance phenomena in the disk and lead the structure

to instant or progressive fatigue failure. In Figure 3, it is to
be noticed that there are critical speeds detected in backward
travelling modes of n = 2-4 around the rotation speed of 6-7
while the critical speed of mode 5 is around the rotation speed
of 8. For higher modes of n, the critical speeds are to be seen in
much higher rotation speeds. It is also interesting to note that
the critical speed is not observed for the mode of n = 1.

Fig. 5. Campbell diagrams for m = 1

Fig. 6. Campbell diagrams for m = 2

Fig. 7. Campbell diagrams for m = 3
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For non-zero values of nodal circle (m 6= 0) in Figures
4-6, the critical speeds are not observed even for higher modes
of n.

It can also be easily seen from Figures 3-6, the values of
natural frequencies increase for each value of n with increasing
values of m and also a rise is to be observed in natural frequen-
cies for each m value increasing values of n.

The difference between forward and backward travelling
waves for each mode can be seen more distinctly with the
increasing rotation speed. This difference becomes more signif-
icant for higher nodal diameter, n values. At certain rotational
speed values, they are intersected. Since there is no nodal
diameter in n = 0 mode, there will be no forward or backward
travelling wave. Therefore, two frequency values, except for
this mode, for each mode are obtained at each rotation speed
value. Depending on the rotation speed, the natural frequencies
are obtained and the Campbell diagrams are plotted. Campbell
diagrams have been compared with and matched the results
given in the literature [8], [10], [12], [14]. Campbell diagrams
are available in the literature for the values 0 and 1 of the
number of nodal circles (m).

In this study, the diagrams are also drawn for m = 2
and 3. Campbell diagrams are presented in Figures 5 and 6 for
various nodal circles and nodal diameters.

The order of the modes of stationary disk changes when
the rotation speed increases. For example, in Figure 3, the
frequency of the backward traveling wave of the mode n = 3
are smaller than those of n = 0 and 1 for the case when the
dimensionless rotation speed is given as 5.

DISCUSSION
For a stationary disk, there is only one natural frequency

for each mode. But when rotation speed increases, the natural
frequency is separated into two parts; one for the backward trav-
elling wave, one for the forward traveling wave. This separation
phenomenon is a crucial part of dynamic behavior of rotating
systems and has to be predicted precisely in order to prevent
unexpected vibrations with significant effects on the system or
even failure.

The measured results in[20] are used in order to validate
presented analytical approach. In [20], the natural frequencies
of DISK III made of aluminum are measured. The inner and
outer radii of the disk are 0.02 m and 0.15 m, respectively.
The density of the aluminum is 2680 kg/m3 and the Young’s

modulus is 15 Gpa. Also the rotation speed of the disk is 1920
rpm. The measured frequencies for the first two modes of
the rotating disk are given as 7.68 kHz and 7.73 kHz. Using
these geometric and material properties, analytical results are
calculated as 8290.9 Hz and 8354.9 Hz. Absolute percentage
errors between experimental and analytical natural frequencies
are 7.95% and 8.08%, respectively. Both frequencies calculated
in this study are larger than the experimental ones. These
differences between the results are caused by idealized con-
ditions in the analytical study. In the experiments, there are
almost several uncertinites in boundary conditions, material,
and geometric properties to some extent. These will cause such
a difference. The comparison shows that analytical results are
in good agreement with experimental results given in [20].

Another validation is done by [21] in which the natu-
ral frequencies of transverse vibrations of the hard disk are
measured and simulated using Finite Element Method (FEM).
These results are compared with analytical values, which were
calculated using presented method in this paper, to investigate
the validity of the approach. Compared results which include
stationary, rotating including FTW and BTW travelling modes
for (0, 2) and (0, 3) are presented in Table 1. It can be seen
from Table 1 that analytical natural frequencies are compatible
with experimental and numerical results for stationary case,
FTW and BTW. For mode 3 and mode 4, maximum absolute
percentage errors between analytical and experimental results
are 1.77% and 4.03%, respectively. Both of these errors exist
in backward traveling waves at 2000 rpm. Also, maximum
absolute percentage errors between analytical and numerical
results are 0.74% and 0.81%, respectively. These errors occur
in backward traveling waves in 8000 rpm. Therefore, it can
be said that the analytical results are in good agreement with
experimental and numerical ones.

The agreement of analytical results is stronger with nu-
merical results than the experimental results. The reason for it
can be stated as the similar idealization of boundary conditions
used in both numerical and analytical calculations. In the exper-
imental study, there are other parameters that affect the natural
frequencies, such as uncertainties in boundary conditions, ma-
terial and geometrical properties, etc. But, these uncertainties
cannot be taken into account in analytical and numerical studies.
Instead of including those uncertainties that affect significantly
the experimental results, idealization assumptions are made in
boundary condition, material properties etc.
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TABLE 1
COMPARISON OF ANALYTICAL RESULTS WITH EXPERIMENTAL AND NUMERICAL RESULTS [21]

MODE 3 (0,2) (Hz) MODE 4 (0,3) (Hz)
Rotation Wave Experimental [21] Numerical [21] Analytical Experimental [21] Numerical [21] Analytical
Speed (rpm) Type This Study This Study
0 - 1232 1211.47 1218.80 1830 1878.12 1890,44
2000 FTW 1301 1279.22 1286.54 1921 1979.18 1991.49

BTW 1174 1145.88 1153.21 1722 1779.18 1791.49
4000 FTW 1350 1349.14 1356.44 2032 2082.33 2094.63

BTW 1101 1082.48 1089.78 1641 1682.33 1694.63
6000 FTW 1424 1421.21 1428.49 2137 2187.59 2199.85

BTW 1044 1021.21 1028.49 1544 1587.59 1599.85
8000 FTW 1484 1495.40 1502.64 2245 2294.92 2307.14

BTW 971 962.06 969.31 1454 1494.92 1507.14

CONCLUSION AND RECOMMENDATIONS
In this paper, transverse free vibrations of rotating annu-

lar disks are investigated with analytical approach. In order to
obtain the natural frequencies, the equation of motion is formu-
lated. Boundary conditions are taken as clamped and free in
inner and outer circumferences, respectively, which is similar to
the fixtures of hard disks. Then, solution of equation of motion
is done with Galerkin method, one of the most well-known
solution techniques. Two different polynomial functions, which
satisfy the boundary conditions, are chosen as the approximate
solution of equation of motion. The unknown coefficients are
obtained from the boundary and normalization conditions. Then
the natural frequencies are calculated. The same results are
obtained by using these two approximate functions. For pre-
senting structural behavior clearly, obtained results are plotted
in Campbell diagrams, which represent the frequency versus
the rotation speed of the disk for different nodal diameter and
nodal circle values. As it is well-known, it can be seen from
the diagrams for a stationary disk that each mode has only
one natural frequency. Also, for a rotating disk, each mode
without nodal diameter has only one natural frequency for
each rotation speed. However, in all modes of a rotating disk
with nodal diameters, two distinct natural frequency values
are observed. The diagrams are in good agreement with those
given in the literature. Critical speed is the rotation speed in
which the frequency of the BTW becomes zero. In this rotation
speed, the resonance can be initiated by any disturbance and the

undesirable behavior or even failure may occur.
In cases where m = 0 and n = 2, 3, 4, critical speeds

can easily be observed. However, for modes where m = 0 and
n = 0, 1, there will be no critical speed to be observed. For
higher values of m, the critical speeds are not to be practically
observed. The natural frequencies and critical speeds are far
beyond the practical limits. Therefore, the modes of higher
values of m are not significant for practical applications.

Also, for validation purposes, the results of analytical
approach are compared with the experimental and numerical
results of two different studies and comparison is given in a
table. It is shown that the results of this study are in good
agreement with those in the literature.

The results of this study are in excellent agreement with
numerical results. The differences between the results of this
study and the experimental study given in the literature are a
bit higher than those of this study and the numerical ones in
the literature. Since the analytical and numerical calculations
use some idealizations for the boundary conditions, material
and geometric parameters, etc. In the experimental study, there
are some uncertainties in these parameters which affect the
measured results.
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