
This article was downloaded by:
Publisher: KKG Publications

Key Knowledge Generation
Publication details, including instructions for author and
subscription information:
http://kkgpublications.com/technology/

Method of Recovery of Deleted Records in a Postgre SQL
Database

SEONGHWAN KIM 1, KWANGSIK CHUNG 2

1, 2 Department of Computer Science, Graduate School of Korea National Open
University, Seoul, South Korea

Published online: 17 August 2017

To cite this article: S. Kim and K. Chung “Method of recovery of deleted records in a postgre SQL database,” International
Journal of Technology and Engineering Studies, vol. 3, no. 4, pp. 169-176, 2017.
DOI: https://dx.doi.org/10.20469/ijtes.3.40005-4

To link to this article: http://kkgpublications.com/wp-content/uploads/2017/3/IJTES-40005-4.pdf

PLEASE SCROLL DOWN FOR ARTICLE

KKG Publications makes every effort to ascertain the precision of all the information (the “Content”) contained in the publications
on our platform. However, KKG Publications, our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the content. All opinions and views stated in this publication are not
endorsed by KKG Publications. These are purely the opinions and views of authors. The accuracy of the content should not be
relied upon and primary sources of information should be considered for any verification. KKG Publications shall not be liable for
any costs, expenses, proceedings, loss, actions, demands, damages, expenses and other liabilities directly or indirectly caused in
connection with given content.

This article may be utilized for research, edifying, and private study purposes. Any substantial or systematic reproduc-
tion, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly
verboten.

http://crossmark.crossref.org/dialog/?doi=10.20469/ijtes.3.40005-4&domain=pdf
http://kkgpublications.com/technology/
https://dx.doi.org/10.20469/ijtes.3.40005-4
http://kkgpublications.com/wp-content/uploads/2017/3/IJTES-40005-4.pdf

International Journal of Technology and Engineering Studies
vol. 3, no. 4, pp. 169-176, 2017 IJTES

METHOD OF RECOVERY OF DELETED RECORDS IN A POSTGRESQL
DATABASE

SEONGHWAN KIM 1∗, KWANGSIK CHUNG 2

1, 2 Dept. of Computer Science, Graduate School of Korea National Open University, Seoul, South Korea

Keywords:
PostgreSQL
Record
Delete
Recovery
Forensic
VACUUM
Hex editor

Received: 28 April 2017
Accepted: 04 June 2017
Published: 17 August 2017

Abstract. This paper recommends recovery methods for records deleted from PostgreSQL. This paper includes a
description of PostgreSQL, which is the subject of this study. It also incorporates a layout of the pages and records
relevant to data storage and the deletion tests and recovery algorithm used. When recovering deleted records,
PostgreSQL data files, which contain a history of deleted records, are required. Also, a Hex editor is used, which can
check the contents of data files. One can analyze each record’s header information by opening PostgreSQL data files
with a Hex editor. Then, the analyzed header information from the records is checked. If it is deemed that there are
deleted records, they can be extracted for recovery. If VACUUM, a record cleanup program offered by PostgreSQL,
has been used for deletion, the records cannot be restored. In this study, it was possible to recover the deleted records
of the PostgreSQL database in the damages caused by cybercrime. Recovered records can be used as legal evidence,
which can benefit companies in a court situation. The benefit of being in a court situation helps protect the interests of
the enterprise.

INTRODUCTION
As enterprises depend significantly on IT systems, and

as the amount of handled information increases, the use of
databases grows and their range of usage also widens. With the
increased use of databases, and a rise in IT-related corporate
crimes, more and more database records are being permitted as
legal evidence. However, database records can be deliberately
or routinely deleted. Therefore, in order for database records to
be allowed as legal evidence, these deleted records should be
recovered.

Previous studies on the methods used to restore records
deleted from databases have only been carried out in regard to
Oracle and certain DBMS. Research on the recovery methods
for records deleted from PostgreSQL, an open source database,
has not yet been carried out. PostgreSQL is a very important
database with 4th largest market share in the world, but there is
no mention of PostgreSQL in other studies and no research has
been done [5]. We have studied PostgreSQL’s record recovery
method, which was not existing. Hence, this paper recommends
methods of recovery for records deleted in PostgreSQL. With
respect to the methods used to recover deleted records, Post-
greSQL data files, which feature a history of deleted records,
are necessary. Also, a Hex editor, which checks the content
of the data files, is used. PostgreSQL data files are opened
with the Hex editor, and then each record’s header information

is analyzed. If it is deemed that the record was deleted, it is
extracted and recovered.

This paper analyzes database changes using generation
and deletion tests for records; it also suggests recovery methods
for deleted records based on the analysis, identifies exceptional
cases, and investigates records’ retrievability.

This paper includes a description of PostgreSQL, which
is the subject of this study, and it also incorporates a layout of
the pages and records relevant to data storage, and the deletion
tests and recovery algorithm that were used.

LITERATURE REVIEW
DBMS, whose recovery methods for deleted records

were studied, include Oracle, DB2, and the SQL Server, among
other commercial DBMS, as well as MySQL (an open-source
DBMS) [1], [2], [3], [4]. As for the relevant research, we will
select two DBMSs among the commercial DBMSs, which have
the top two highest market shares, and we will investigate their
recovery methods.

In this paper, we will investigate the recovery methods
for the records and tables in PostgreSQL. In addition, we will
identify the threshold at which records and tables cannot be
restored, and we will also discuss any pertinent test results.

∗Corresponding author: Seonghwan Kim
†Email: auidy@naver.com

c© 2017 The Author(s). Published by KKG Publications. This is an Open Access article distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License.

auidy@naver.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

2017 Int. J. Tec. Eng. Stud. 170

The Method of Recovery for Deleted Records in the Or-
acle Database

To restore records deleted from Oracle, the System ta-
blespace and user tablespace created by the user are required.
By figuring out the blocks of user tablespace, the record con-
tents of every table can be identified, and one can also determine
whether the records were deleted according to the flag value
for that record. When deleting records, one flag value for each
record of the data block changes. Flag values change from
0x2C to 0x3C, while other information remains fixed [1].

When dropping a table, two flag values for the deleted
tables of the OBJ$ schema and C OBJ$ schema in system
tablespace change. The flag value for the deleted tables in the
OBJ$ schema changes from 0x2C to 0x3C, and the flag value
for the deleted tables in the C-OBJ$ schema changes from 0x6C
to 0x7C.

Exceptionally, when the Shrink feature, which cleans
up deleted space to optimize the database, is used, the deleted
records and tables cannot be restored. Recovery of the tables is
only possible when the records are not overwritten.

After extracting the deleted records and saving them as
separate files, the restoration of deleted records ends. Table
recovery was not mentioned in the relevant research.

The Method of Recovery for Deleted Records in DB2
Database

When deleting records from DB2, the flag value for EX-
TENT MAP inside the tablespace changes. When generating
records, the flag values are given sequential values, and when
they are deleted, the flag value changes to 0xFFFF while the
records’ other information remains fixed.

When dropping a table, the records are kept and they can
be restored. However, the flag values that are related to deleting
a table are not identified in the relevant research [2].

There are exceptional cases in which records cannot be
recovered; this is when the last records are deleted and when
new records are generated. In this case, it is impossible to
recover the record, for the information on the last deleted record

has been overwritten. In addition, when the database inside
the DBMS is deleted with the DROP command, the records
included in the deleted database cannot be recovered.

After extracting the deleted records and saving them as
separate files, restoration work for the deleted records ends.
There is no reference to the restoration work required for tables
in the relevant research.

METHOD AND MATERIALS
PostgreSQL

PostgreSQL is an Object-Relational Database Manage-
ment System (ORDBMS) that is based on POSTGRES 4.2,
which was developed by UC Berkeley’s Computer Science
Department [6].

PostgreSQL supports representative functionalities, such
as complex syntax, foreign key, trigger, updatable view, trans-
action integrity, Multi-Version Concurrency Control (MVCC),
etc. and it follows SQL standards. Also, PostgreSQL can be
extended by users in a number of ways. Functionalities that
can be extended include data type, function, operator, aggregate
function, index method, procedural language, etc.

When deleting records in PostgreSQL, the DELETE
command is used. The format of the DELETE command is
“DELETE FROM table name WHERE column name = ’column
value’”. When not using the WHERE condition and using the
DELETE FROM table name together, all records in the table are
deleted. Since there is no additional confirmation for deletion
when deleting records, one must be careful. This research was
carried out based on PostgreSQL 9.4.

Data Directory and File Structure
PostgreSQL defines the settings and data files

used in DBMS as PGDATA. Generally, PGDATA means
/var/lib/pgsql/data. PGDATA includes several subdirectory
and control files, which are shown in TABLE 1. Also, settings
files such as postgresql.conf, pg hba.conf, and pg ident.conf
are included in PGDATA, but they can be saved in other places
as well [7], [8], [11].

171 S. Kim, K. Chung - Method of recovery of deleted records 2017

TABLE 1
DATA DIRECTORY AND FILES

Item Description
postmaster.pid A lock file written the current process ID, data directory path, start
timestamp, port, unix domain socket path, listen address, shared memory segment ID
postgresql.auto.conf A file for storing config parameters that are set by alter system
postmaster.opts A file for command line options the server was started with
PG VERSION A file written major version information
base Directory including data directory
global Directory including system table
pg clog Directory including status of transaction
pg dynshmem Directory including files that used by dynamic shared memory’s subsystem
pg logical Directory including status data for logical decoding
pg multixact Directory including data of multi transaction status
pg notify Directory including data of listen/notify status
pg replslot Directory including data of replication slot
pg serial Directory including information about committed serializable transactions
pg snapshots Directory including experted snapshot
pg stat Directory including permanent file about statistics
pg stat tmp Directory including temporary file for statistics
pg subtrans Directory including data of subtransaction status
pg tblspc Directory including symbolic link for tablespace
pg twophase Directory including status of prepared transaction
pg xlog Directory including write ahead log file

The database generated by a user is generated as a sub-
directory ‘base’, which is a subdirectory of PGDATA. The
directory name of the database generated by the user becomes
OID (ObjectID), which is automatically generated in the DBMS.
The table name generated by the user becomes OID, which is
automatically generated in the DBMS. Temporary tables are
generated in tAAA BBB form; AAA serves as identification of
the process that generated the file, and BBB becomes an OID

that is automatically generated in the DBMS.

Page Layout
Every table is stored as an array of pages of a fixed size.

The size of the page is 8 KB. In a table, since all pages are
logically equivalent, the record can be saved in any page. Each
page consists of 5 parts, and the layouts comprising the page
are shown in TABLE 2 [9], [12].

TABLE 2
PAGE LAYOUT

Item Description
Page Header Include general information about page, and also had an unallocated space information. total 24 bytes.
Record identifier Information about actual records location. 4 bytes per record.
Unallocated space New record identifier is allocated from the start of this area, and actual new record is allocated from the end.
Record The actual record itself.
Special space For special space for specific data(optional)

2017 Int. J. Tec. Eng. Stud. 172

The first 24 bytes of each page are the page header. The layouts comprising the page header are shown in TABLE 3.

TABLE 3
PAGE HEADER LAYOUT

Flag Length Description
pd lsn 8 bytes About next byte after last byte of xlog record for last change to this page
pd checksum 2 bytes Information of page checksum
pd flags 2 bytes Information of flag bits
pd lower 2 bytes About location. Offset for start of unallocated space
pd upper 2 bytes About location. Offset for end of unallocated space
pd special 2 bytes About location. Offset for start of special space
pd pagesize version 2 bytes Information about page size and layout version
pd prune xid 4 bytes For oldest unpruned XMAX on page.

The record identifiers are followed by the page header.
Record identifiers require 4 bytes each. Record identifiers
contain the start of the record, size, and certain attributes of the
record. New record identifiers are allocated at the start of the
unallocated space.

Unallocated space is followed by a record identifier. The
unallocated space is where information is not stored.

The records are stored at the end of the unallocated
space. The records themselves are where the contents entered
by the user are stored.

The final section is the special section, which is generally
not used.

Record Layout
All record structures are the same, and they contain

fixed header sizes and other optional flag. The optional parts
are t infomask, t hoff, and data entered by the user. Layouts
comprising the header are shown in Table 4. The starting point
of the data stored by the user is a byte that comes after the
t infomask2 value.

TABLE 4
RECORD HEADER LAYOUT

Flag Length Description
t xmin 4 bytes TransactionID stamp for insert
t xmax 4 bytes TransactionID stamp for delete
t cid 4 bytes CommandID stamp for insert and(or) delete
t xvac 4 bytes TransactionID for vacuum operation
t ctid 6 bytes current TID of this or newer row
t infomask2 2 bytes attributes number and various flag bits
t infomask 2 bytes various flag bits(optional)
t hoff 1 byte user data’s offset(optional)

Change of Data file Triggered by Generating Record
There are four changes in page layout when record is

generated. First, information of page header layout is changed.

Second, record identifier is changed. Third, record data are
added. Fourth, unallocated space is shrunken. Fig. 1 is figured
about before the generating record.

173 S. Kim, K. Chung - Method of recovery of deleted records 2017

Fig. 1. Page layout

Fig. 2 is figured about after the generating record.

Fig. 2. Page layout after generating record

2017 Int. J. Tec. Eng. Stud. 174

Change of Data file Triggered by Record Deletion
There are two changes in record header layout when

record is deleted. First, t xmax flag is changed. Before dele-
tion, the value of t xmax is ’0x00 00 00 00’; afterwards, an
unspecified value is allocated. Second, t ctid flag is changed.
According to the deletion test, the value of 4th byte from the

t ctid value changes from ‘0x00’ to ‘0x20’; the value of 6th
byte from the t ctid value changes from unspecified value to
unspecified value. Only, the value of 4th byte from the t ctid
value is changed regularly. Fig. 3 is figured about after the
deleting record.

Fig. 3. After the deleting record

Instances, where the record header information changed
according to performing the deletion test, were above three re-
sults. For all continuous tests, the 4th byte from the t ctid value
after the change remained fixed.

When distinguishing the deleted records, if the 4th byte
from the t ctid value was ‘0x00’, it was not deleted, and if it
was ‘0x20’, it was found to be deleted.

Record Generation of after Deletion
When a new record is generated after the existing one is

deleted, the contents entered by the user of the deleted record
are not overwritten, and they remain without any changes. Dele-
tion of the existing record and generation of a new record are
shown in Fig. 4.

Fig. 4. Generated after the existing one is deleted

175 S. Kim, K. Chung - Method of recovery of deleted records 2017

Deletion of a Database and Table
When deleting a database and table, the physical direc-

tory and the files targeted for deletion are deleted. Therefore, the
records included in the targets for deletion cannot be restored.
When deleting a table, the size of the physical file becomes 0
bytes; then, when restarting PostgreSQL, the physical file of the
deleted table is deleted.

Database Optimization Test
Even if the records are deleted, a history of the records

is kept. However, if VACUUM, which is a cleaning program
that is offered as a basic program by PostgreSQL, is used, then
the entire history of deleted records is also deleted [10].

RESULTS
When records are deleted, the value of t xmax and t ctid

inside the record header changes. The value of t xmax changes

from ‘0x00 00 00 00’ of 4 bytes to another value, which varies
according to the value of the transaction. As for t ctid value,
the value of fourth bytes among values comprised of 6 bytes
changes from ‘0x00’ to ‘0x20’.

Recovery Algorithm for Deleted Records
Copy the deleted table file to the system to be recovered.

Connect to PostgreSQL and check the structure of the table to
be restored. The table file to be restored is divided into pages
and copied to a separate file. Each page copied into a separate
file is divided into records. Check the t ctid flag of the record
to separately collect records with the fourth byte value ‘0x20’.
Combine the collected records with the table structure and
convert the values of each column into ASCII form to complete
recovery.

The deleted record recovery algorithm of PostgreSQL is
shown in Fig. 5.

Fig. 5. Recovery algorithm for deleted records

DISCUSSION
The deleted record recovery method requires a Post-

greSQL data file in which the structure of the table where the
deleted record existed and the information of the deleted record
exist [13,14]. Connect to PostgreSQL server, execute SQL
command, and acquire table structure through it. To analyze
the data file, copy the entire PostgreSQL data file to a computer
that will perform the data recovery operation using a storage
medium such as USB. The hex editor is used to check the

contents of the data file with the records to be restored.
Open the PostgreSQL data file with a hex editor and

check the header information of the record. If the value of the
fourth byte of the t ctid flag of the confirmed header informa-
tion of the deleted record is changed to ‘0x20’, the record is
determined as the deleted record. When the record is deleted,
since the value of the fourth byte of the t ctid flag is changed
consistently to ‘0x20’, the t ctid flag is defined as a criterion for
determining the deleted record.

2017 Int. J. Tec. Eng. Stud. 176

The record information determined as the deleted record
is stored as a separate file. By comparing the record information
stored in a separate file with the structure of the table, it is
determined which column value the record value to be restored
is.

For the readability of the record information, the record
information expressed in hexadecimal notation is converted
into the ASCII form and the recovery operation of the deleted
record is completed. If you use VACUUM, a cleanup program
for deleted records provided by PostgreSQL, it is impossible
to recover records because deleted record information is deleted.

CONCLUSION AND RECOMMENDATIONS
As IT usage in enterprises increases, the usage of

databases increases accordingly. The increased use of databases
raises the possibility that database records will need to be used
as evidence in crime situations. For a database record to be
utilized as legal evidence, records associated with the crime
should be presented to the court. However, database records
can be deleted both routinely and deliberately, which makes it
impossible to present them to the court. Therefore, in order to
submit deleted records to the court as evidence, it is necessary
to restore the deleted records. A number of studies have been
carried out on this topic, but they have only targeted record re-

covery methods for certain DBMSs. Studies of record recovery
methods for PostgreSQL have not yet been performed, despite
of the world’s fourth largest market share. This paper proposes a
record recovery method for PostgreSQL. We proposed a method
to recover deleted records when PostgreSQL records are ille-
gally deleted or deleted normally but need to be recovered. In
this study, it was possible to recover the deleted records of the
PostgreSQL database in the damages caused by cybercrime.
Recovered records can be used as legal evidence. This can be
beneficial to companies in court situations. The advantage of
being in a court situation helps protect and keep the property
of the enterprise. And the results of this study can be used to
recover records even if normally deleted records are needed.
However, there are limits to the possibility of recovering deleted
records in some cases already mentioned.

Future work will be dedicated to studying for another
DBMS that has not yet been studied. And we will also build a
recovery automation solution if the environment is given.

Declaration of Conflicting Interests
This is the original work formulated and executed by the

authors. It is not being processed or published elsewhere and
there are no identifiable conflicts of interest.

REFERENCES

[1] J. H. Choi, D. W. Jeong and S. Lee, “The method of recovery for deleted record in oracle database,” Journal of the Korea
Institute of Information Security and Cryptology, vol. 23, no. 5, pp. 947-955, 2013.

[2] K. Lee, D. Jeong, C. Kang and S. Lee, “The method of recovery for deleted record in the DB2 database,” Journal of Digital
Forensics, vol. 8, no. 2, pp. 1-14, 2014.

[3] S. M. Jang, “Deleted records recovery research for MySQL innoDB,” Unpublished dissertation, Graduate School of Information
Security, Korea University, Seoul, South Korea, 2014.

[4] S. Y. Park, “A research for record recovery method in database,” Graduate School of Information Security, Korea University,
Seoul, South Korea, 2013.

[5] M. Stonebraker and L. A. Rowe, “The design of Postgres,” in Proceedings of the International Conference on Management of
Data, Washington, D.C., WA, pp. 340-355, May 28-30, 1986.

[6] PostgreSQL. (2017). PostgreSQL 10 RC 1 [Online]. Available: https://www.postgresql.org/
[7] Federico Campoli. (2015). PostgreSQL database administration [Online]. Available: https://goo.gl/7fHzbA
[8] J. S. Katz and J. Mlodgenski. (2013). A tour of postgreSQL data types [Online]. Available: https://goo.gl/egHAqk
[9] B. Momjian. (2017). PostgreSQL internals through pictures [Online]. Available: https://goo.gl/fcG6cr

[10] B. Momjian. (2017). Mastering postgreSQL administration [Online]. Available: https://goo.gl/Ax6GC2
[11] S. Christensen. (2010). Postgres administration for sysadmins [Online]. Available: https://goo.gl/h8zvr5
[12] EnterpriseDB. (n.d.). Introduction to postgreSQL administration [Online]. Available: https://goo.gl/YAHw8H
[13] Kim, J., Park, A. and Lee, S. “Recovery method of deleted records and tables from ESE database,” Digital Investigation, vol. 18,

pp. 118-124, 2016.
[14] Liu, X., Fu, X. and Sun, G. “Recovery of deleted record for SQLite3 database”. In 8th International Conference on Intelligent

Human-Machine Systems and Cybernetics (IHMSC), Vol. 2, pp. 183-187, 2016.

— This article does not have any appendix. —

https://www.postgresql.org/
https://goo.gl/7fHzbA
https://goo.gl/egHAqk
https://goo.gl/fcG6cr
https://goo.gl/Ax6GC2
https://goo.gl/h8zvr5
https://goo.gl/YAHw8H

