
This article was downloaded by:
Publisher: KKG Publications

Key Knowledge Generation
Publication details, including instructions for author and
subscription information:
http://kkgpublications.com/technology/

EMS-GT2: An Improved Exact Solution for the (l,
d)-Planted Motif Problem

MARK JOSEPH D. RONQUILLO 1, PROCESO L. FERNANDEZ 2

1, 2 Ateneo de Manila University, Quezon City,
Philippines

Published online: 22 June 2017

To cite this article: M. J. D. Ronquillo and P. L. Fernandez, “EMS-GT2: An improved exact solution for the (l, d)-planted motif
problem,” International Journal of Technology and Engineering Studies, vol. 3, no. 3, pp. 124-132, 2017.
DOI: https://dx.doi.org/10.20469/ijtes.3.40005-3

To link to this article: http://kkgpublications.com/wp-content/uploads/2017/3/IJTES-40005-3.pdf

PLEASE SCROLL DOWN FOR ARTICLE

KKG Publications makes every effort to ascertain the precision of all the information (the “Content”) contained in the publications
on our platform. However, KKG Publications, our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the content. All opinions and views stated in this publication are not
endorsed by KKG Publications. These are purely the opinions and views of authors. The accuracy of the content should not be
relied upon and primary sources of information should be considered for any verification. KKG Publications shall not be liable for
any costs, expenses, proceedings, loss, actions, demands, damages, expenses and other liabilities directly or indirectly caused in
connection with given content.

This article may be utilized for research, edifying, and private study purposes. Any substantial or systematic reproduc-
tion, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly
verboten.

http://crossmark.crossref.org/dialog/?doi=10.20469/ijtes.3.40005-5&domain=pdf
http://kkgpublications.com/technology/
https://dx.doi.org/10.20469/ijtes.3.40005-3
http://kkgpublications.com/wp-content/uploads/2017/3/IJTES-40005-3.pdf

International Journal of Technology and Engineering Studies
vol. 3, no. 3, pp. 124-132, 2017 IJTES

EMS-GT2: AN IMPROVED EXACT SOLUTION FOR THE (l, d)- PLANTED
MOTIF PROBLEM

MARK JOSEPH D. RONQUILLO 1∗, PROCESO L. FERNANDEZ 2

1, 2 Ateneo de Manila University, Quezon City, Philippines

Keywords:
Planted (l, d)-Motif Problem
Bit-Based
Exact Enumerative Algorithm

Received: 12 December 2016
Accepted: 18 March 2017
Published: 22 June 2017

Abstract. In this research, the EMS-GT2 algorithm, an extension of the Exact Motif Search-Generate and
Test (EMS- GT), an exact enumerative algorithm for PMS, is being proposed. In EMS-GT2, a new speedup
technique based on an important property is discovered and incorporated. This speedup has enabled a more efficient
block-processing of candidate motifs. The C++ implementation of EMS-GT2 running on synthetic data for several
PMS challenge instances demonstrates that it is competitive with both the EMS-GT and qPMS9, the two current
best exact solutions for PMS. In particular, EMS-GT2 is able to reduce the run-times of EMS-GT by 20.3%, 15.8%
and 22.6% for the (l, d) challenge instances (13, 4), (15, 5) and (17, 6) respectively. It also outperforms qPMS9,
having runtime reductions of 91.6%, 79.3%, 82.0%, 59.4% and 9.7% for the (9, 2), (11, 3), (13, 4), (15, 5) and (17, 6)
synthetic challenge instances respectively.

INTRODUCTION
DNA motif finding is a well-studied topic in computa-

tional biology. A motif is a short pattern of interest that occurs
in a large amount of biological data. Detection of these motifs
often leads to new biological discoveries. This may lead to
finding transcription factor binding sites that help biologists
understand gene functions, understand human diseases, identify
potential therapeutic drug targets and conclude commonalities
from different species. There are many variations of the motif
search problem, such as the Simple Motif Search (SMS), the
Edit-distance-based Motif Search (EMS) and the PMS which
is also known as (l, d)-motif search. This study focuses on an
exact enumerative algorithm for the PMS problem. PMS is
formally defined in [1] as “Input are t sequences of length n
each. Input also are two integers l and d. The problem is to find
a motif (i.e., a sequence) M of length l. It is given that each
input sequence contains a variant of M. The variants of interest
are sequences that are at a hamming distance of d from M.”

In solving the PMS problem, traditional string matching
is not efficient since these biological motifs are not typically
exact but are subject to mutations. As a matter of fact, PMS has
already been proven to be NP-hard, which means that it is very
unlikely to have an algorithm that solves it in polynomial time
[2].

Some of the terms used in this study are defined be-
low:

• An l-mer is a string of length l in a DNA sequence of
length m where l <m.

• The Hamming distance dH between two l-mers, of equal
length, is equal to the number of positions where they
have mismatches. Ex. dH(acttgca, actaaga) = 3.

• An l-mer x is considered a d-neighbor of another l-mer y
if the Hamming distance between the two is at most d.

• The d-neighborhood of an l-mer x is the set N(x, d) of
all l-mers with at most d Hamming distance from x. i.e.,
dH(x, x’) ≤ d. Ex. ccgga, ccaaa, and gctta are all in
N(cctta, 2), where l = 5

• The d-neighborhood of a sequence S is the set N(S, d) of
all d-neighbors of all l-mers in sequence S. Ex. N(aattacg,
2) = N(aatta, 2) ∪ N(attac, 2) ∪ N(ttacg, 2) where l = 5.
In this study, we introduce EMS-GT2, an improvement

of EMS-GT that is an exact enumerative algorithm for the
planted motif problem consisting of two phases - - Generate
and Test. The EMS-GT2 algorithm leverages on the block
processing of candidate motifs during its Test phase. The
original EMS-GT algorithm was previously evaluated using (l,
d)-challenge instances (9, 2), (11, 3), (13, 4), (15, 5) and (17,
6). It was already shown in [3] that the current implementation
of EMS-GT is faster than the then state-of-the-art algorithms

∗Corresponding author: Mark Joseph D. Ronquillo
†Email: markronquillo23@gmail.com

c© 2017 The Author(s). Published by KKG Publications. This is an Open Access article distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License.

markronquillo23@gmail.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

125 M. J. D. Ronquillo, P. L. Fernandez, - EMS-GT2: An improved exact solution 2017

PMS8 and qPMS9 for all (l, d)-challenge instances mentioned
except in (17, 6). Even though that EMS-GT2 algorithm can
only solve (l, d)-instances when l ≤ 17, studies have shown
that DNA motif lengths are usually around 10 bp (i.e., base
pairs, or the number of characters in the string representation) in
eukaryotes and 16 bp in prokaryotes [4]. Thus, the EMS-GT2
algorithm is still significant in practical biological applications.

LITERATURE REVIEW
Motif finding has been studied extensively in the pre-

vious years. Numerous algorithms have been made for motif
finding and for PMS. Each of these algorithms may be catego-
rized as either an approximate algorithm or an exact algorithm.
Approximate algorithms, although they are fast, do not guar-
antee the exact solution all the time. Heuristic algorithms for
PMS that perform local search such as Gibbs Sampling [5],
Expectation Maximization (EM) [6], and Projections [7], [8]
have been previously explored in the literature.

Most of these algorithms initially work on a tuple of
alignment positions that corresponds to l-mers across different
string sequences in the dataset. They then iteratively refine the
alignment until a certain criterion is met. MEME [6] is a tool
for motif finding that implements Expected Maximization.

WINNOWER [9] reduces the PMS problem to finding a
large clique in a multipartite graph. Instead of looking for the
motif directly, the algorithm applies a winnowing technique to
remove spurious edges that trims the graph representation, mak-
ing it easier to find the motif. Other approximate algorithms are
MULTIPROFILER [10], Pattern Branching, Profile Branching
[11] and CONSENSUS [12].

Exact algorithms are not as fast as approximate algo-
rithms but are guaranteed to return the correct answer for any
given problem instance. Furthermore, these exact algorithms
can be categorized based on their approach in solving the prob-
lem. One approach is to generate a common neighborhood out
of all (ml + 1)n possible positions or l-mers from all string
sequences. This approach is called sample-driven. Another ap-
proach is called pattern-driven that checks from |

∑
|l possible

l-mers which are the motifs over a base alphabet
∑

.
[1] proposed a series of exact algorithms for the (l,

d)-motif search problem. The algorithm PMS1 [1] is one of
these algorithms. PMS1 solves the problem by enumerating the
d-neighborhood of all the sequences in the dataset and intersects
them; the result is a set of motifs. PMSi and PMSP [13] are
algorithms based on PMS1. PMSi improves the memory space
requirement of PMS1 by processing only two sequences at a
time. PMSP works by generating all the d-neighborhood of
each l-mer in the first sequence and testing each d-neighbor
if it exists in the remaining sequences. PMSPrune [13] works

very similar to PMP with some improvements. It generates the
neighborhood of an l-mer using a branch and bound approach
and implements a pruning strategy to speed up the testing of
l-mers.

Succeeding algorithms like PMS5 [14] and PMS6 [15]
extend the ideas of PMS1 and PMSPrune. PMS5 generates the
common neighborhood of three l-mers from different sequences
at a time and uses Integer Linear Programming for the pruning
process. PMS6 only differs from PMS5 in the way it determines
the three l-mers. Quorum PMS (qPMS) is a generalized version
of the (l, d)-motif search problem.

Instead of finding an l-mer that exists in all n sequences,
it only considers up to q where q ≤ n. We can see that a qPMS
problem is equal to PMS when q = n. The qPMS7 [16] is one
algorithm that solves the qPMS problem. Algorithm qPMS7 is
a generalized version of qPMSPrune (quorum version of PM-
SPrune) combined with the pruning strategy of PMS5 algorithm.
PMS8 [17] is an algorithm that combines the sample-driven
approach and the pattern-driven approach.

First, it chooses k-tuple T of l-mers from k different
sequences and it makes sure that all l-mers in T have a common
neighbor. Each l-mer that belongs to the common neighborhood
of the tuple T is checked if it appears in the remaining n -
k sequences. One of the current state-of-the-art algorithms,
qPMS9 [18], improves the sample-driven approach of PMS8 by
prioritizing l-mers that are highly distant from those already in
the tuple, resulting in a smaller size of common d-neighborhood
to test and enables the algorithm to process the quorum version
of the PMS problem.

Several exact algorithms solve the PMS problem us-
ing suffix trees and other related data structures. RISO [19],
RISOTTO [20], SPELLER [21] and SMILE are all exact algo-
rithms that use suffix trees. MITRA [22] improves the excessive
memory requirement of sample-driven approach by using a
mismatch tree. Two other algorithms that have some similarity
with our algorithm are the Voting algorithm and Bit-based
algorithm.

Voting algorithm [23] maintains a hash table that tracks
the number of occurrences of every possible l-mer and makes
sure that every l-mer is only counted once in each sequence. An
l-mer is considered a motif if its total occurrences are equal to
the total number of sequences in the dataset.

Bit-based algorithm [24] generates the neighborhood
of each sequence and intersects it to get the set of motifs. Un-
like PMS1, the Bit-based algorithm maps every l-mer to its
corresponding integer value. It uses an array of size |

∑
|l to

represent the neighborhood of a sequence and uses the integer
representation of an l-mer to flag if it is a member of the array.

It generates the neighborhood of all sequences and

2017 Int. J. Tec. Eng. Stud. 126

merges it using the logical operator AND. The resulting array
represents the set of motifs.

The EMS-GT Algorithm
The Exact Motif Search - Generate and Test Algorithm

(EMS-GT) for the planted motif search problem is composed
of two phases, the Generate phase, and the Test phase. The
Generate phase takes the first n’ number of string sequences in
the dataset and generates the set d-neighborhood one sequence
at a time then intersects it.

This accumulates and outputs the set of candidate motifs
C and is composed of l-mers that have at least one d-neighbor
in each of the first n’ sequences. The Test phase evaluates
each candidate motif c ∈ C by checking if c has at least one
d-neighbor in each of the remaining n - n’ string sequences.
The phases are formally defined below:

Generate Candidates
This step operates on the first n’ sequences. The inter-

section of the d-neighborhood of each sequence results to the
set of candidate motifs C.

C = N(S1, d) ∩N(S2, d) ∩ ... ∩N(Sn′ , d). (1)

Test Candidates
Each candidate motif in C is evaluated if it has a

d-neighbor in all of the remaining n - n’ string sequences. If a
candidate motif passes the test, it is then included in the set of
motifs M.

Speedup Strategies. To further improve the algorithm
performance, we introduced a number of speedup strategies,
and these techniques are defined in this section:

1. Integer mapping of l-mers.
The l-mers are represented using binary representation

of integer values. Each character in the l-mer is translated using
2 bits (a=00, c=01, g=10, t=11). Ex. actg maps to 00011110
and has an integer value of 30.

2. Bit-based set representation and l-mer enumeration.
The EMS-GT implementation maintains a 4l array for

enumerating all the possible l-mer values. The l-mer’s integer
value is used as the index value for the array. It uses the value
of 1 if the l-mer is a member of the set else it sets the value to 0.

3. Bit-array compression.
To efficiently store these l-mers and save memory space,

EMS-GT implements an approach that compresses the search
space array using integer value bit flags. Instead of one l-mer per
index value, the implementation can flag up to 32 l-mers (since
we are using 32-bit integers) per index value. An illustration on
how the algorithm accesses the bit flag is provided below:

Ex. gacgt maps to 1000011011 = 539 in decimal.
bit position = 539 mod 32 = 27; array index = 539 / 32

= 16; The bit flag for gacgt is in the 27th least significant bit of
the integer at array index 16.

4. XOR-based Hamming distance computation.
The mapping of an l-mer to its integer value has an addi-

tional advantage in computing for mismatch positions. Applying
the Boolean operator exclusive-or (XOR) between two integer
values will return another integer value that contains a nonzero
value for mismatch positions. Counting this nonzero bit pair
positions result to the hamming distance value. An example of
this computation is shown below:

Ex. aacgt maps to 0000011011
tacgc maps to 1100011001
XOR produces 1100000010 = 2 mismatches (Note, the

mismatches are counted per pair)
5. Recursive neighborhood generation.
The Generate step of the algorithm produces the

d-neighborhood of a string sequence by generating the
d-neighborhood of all l-mers in that sequence. Our implementa-
tion of EMS-GT uses a recursive approach for generating the d-
neighborhood of an l-mer. The recursive generation can be visu-
alized by a tree T(x) of height d that is generated in a depth-first
manner. Each node is a tuple of (w, p) where w is an l-mer and
p corresponds to a position in the l-mer 0 ≤ p ≤ l. At a given
node (w, p) and p 6= l, three children nodes are generated where
each node is a variant of w that has a different character starting
at the p + 1 position. The root node is (x, 0), and any l-mer in
nodes at depth t has a hamming distance of t from the l-mer x
(see Figure 1). Given this, the expected size of N(x, d) can be
computed using the equation:

|N(x, d)| =
d∑

i−0

(
l

i

)
3i (2)

127 M. J. D. Ronquillo, P. L. Fernandez, - EMS-GT2: An improved exact solution 2017

Fig. 1. Illustration of the recursive generation of neighborhood

6. Block-based optimization for neighborhood genera-
tion.

The way our implementation of the algorithm represents
the neighborhood of 4l bit flags array opens up a new way to
improve the generation of neighborhood N(x,d). The algorithm
maintains an array of 32-bit integers where each bit represents
an l-mer. Setting the bit value to 1 means that the l-mer is in
N(x, d), otherwise 0 means it is not. The improvement generates
the neighborhood by blocks of size k where 0<k<l instead
of per bit. It is observed that dividing the bit array N into
4k consecutive blocks results to blocks conforming to one of
the (k + 2) possible block patterns. For each possible k-mer,
block patterns are pre-generated according to the remaining
number of allowed mismatch d′ where 0 ≤ d′ ≤ d. There is no
need to pre-generate the block pattern for 0 value since it only
corresponds to a block pattern where exactly one l-mer is set
and the block pattern for d value since it corresponds to a block
pattern where all bits are set. Given an l-mer x, the generation
of N(x, d) now divides the l-mer to its (l - k)-length prefix y and
its k-length suffix z. The algorithm then generates all prefixes
in N(x, d) by recursively generating N(y, d). For each prefix
y ∈ N(y, d), a block pattern is applied to the neighborhood
array based on the remaining number of allowed mismatch d’
computed using d - dH(y, y’) and the suffix z. This is based
on the observation that the distance between two l-mers is
equal to the sum of the distance between their prefixes and the
distance between their suffixes. The run-time complexity for
generating the d-neighborhood of l-mer x is now reduced to
0(4k

∑l−k
i=0

(
l−k
i

)
3i)

METHOD AND MATERIALS
This section states how the EMS-GT2 and the proposed

speedup techniques were implemented and evaluated using
synthetic datasets for some challenge (l, d) instances. A study
[18] proposed that (l, d) instances where d is the largest integer
value for which the expected number of motifs of length l would
occur in the input by random chance and does not exceed a
constant value (500) are categorized as challenging instances.
The following (l, d) instances (9, 2), (11, 3), (13, 4),

(15, 5) and (17, 6) are the only challenge instances where
l is between 9 and 17, and these challenge instances were used
for the evaluation of the algorithms.

Datasets
Algorithms that solve PMS [9], [17] [18] use a dataset

containing 20 string sequences where each nucleotide is in∑
= {a, c, g, t}. Each string sequence is 600 Base Pairs (bp)

long and each nucleotide is randomly generated with an equal
chance of being selected. A motif is then generated and for
each string sequence in the dataset, a d-neighbor is planted at a
random position. In this study, a generator was run to produce a
dataset of PMS problem instances with this configuration, and
this dataset was then used to evaluate the algorithms. Further-
more, a converter program was used to translate the dataset into
FASTA format in order to execute qPMS9.

Implementation
The EMS-GT2 maintains a 4l motif search space that

is represented by an array of bits for space efficiency. The
previous speedup technique (used in EMS-GT) exploits this
manner of representing the search space by generating the
neighborhood of an l-mer by blocks instead of per bit. In this
study, we took advantage of this block-processing approach
in the testing of candidate motifs. The Test phase checks if
a candidate motif c is in the remaining n - n’ sequences by
comparing if there is at least one l-mer in each sequence that is
within d-distance from c. If a candidate motif x is eliminated
for failing to have a d-neighbor in some input sequence Si, then
it is possible to reduce the testing for another candidate mo-
tif y on the same sequence Si if y is within the same k-block as x.

Parameter Fine Tuning
The EMS-GT2 defines an integer value n′(1<n′<n)

that divides the dataset into two set of sequences. The first n’
sequences are used in the Generate phase while the remaining
are assigned to the Test phase. Previous experimentations [3]
showed that it is efficient for the algorithm to set the value of n’
to 10. Technically, n’ dictates how big is the size of the set of

2017 Int. J. Tec. Eng. Stud. 128

candidate motifs C to be evaluated if they are in the remaining n
n’ sequences. In line with this, we run an experimentation that
records the average runtime of the algorithm with the speedup
techniques over 5 tests and having different values for n’. The

values for n’ range from 5 to 10 in this experiment, since we
only want to make the candidate motif set large enough for our
speedup technique to take effect.

TABLE 1
RUNTIME EVALUATION OF THE ALGORITHM WITH SPEEDUP OVER DIFFERENT n’ VALUES

Sequence (9, 2) (11, 3) (13, 4) (15, 5) (17, 6)
5 0.07 s 0.42 s 2.37 s 17.86 s 148.62 s
6 0.06 s 0.29 s 1.54 s 12.64 s 116.01 s
7 0.05 s 0.21 s 1.01 s 10.70 s 119.94 s
8 0.05 s 0.18 s 0.84 s 10.38 s 119.82 s
9 0.03 s 0.14 s 0.75 s 11.01 s 132.10 s
10 0.03 s 0.13 s 0.76 s 11.90 s 146.10 s

Table 1 shows the ideal n’ value for (l, d)-challenge
instances. For (l, d) instances where l ≤ 11, the ideal value for
n’ is still 10. This is true due to the efficiency of the Generate
phase in small instances of the problem. For (13, 4), (15, 5) and
(17, 5), different n’ were used in the evaluation which are 9, 8
and 7 respectively.

Evaluation
For evaluation of the algorithms, we compared the EMS-

GT2 to EMS-GT and the algorithm qPMS9. We used the
challenging (l, d) instances defined in [13] [18]. The instances
used in the evaluation are the following: (9, 2), (11, 3), (13, 4),
(15, 5) and (17, 6).

RESULTS
This section describes EMS-GT2 with the two proposed

speedup techniques and briefly discusses the observation where

the idea for the improvement originated. Runtime evaluation of
EMS-GT2 is also discussed in this section.

Faster Candidate Motif Elimination through Block Pro-
cessing

The EMS-GT algorithm tests candidate motifs in a brute-
force approach. A candidate motif is tested by checking if
it has at least one d-neighbor in each of the remaining n n’
sequences. In testing a candidate motif c, if there is a sequence
Si in the remaining n n’ sequences where c does not have any
d-neighbor, then candidate motif c is automatically eliminated.
In our implementation, the search space is represented by a
compressed bit array and the l-mers are enumerated alphabeti-
cally. L-mers that are near each other do not differ that much.
We used this observation in improving the way the algorithm
tests the candidate motifs (see Figure 2 for the illustration of the
search space).

Fig. 2. First 8 rows of the 45 search space with random flag values

129 M. J. D. Ronquillo, P. L. Fernandez, - EMS-GT2: An improved exact solution 2017

In EMS-GT, each testing of candidate motif is indepen-
dent of each other. We propose here a new speedup technique
that processes these candidate motifs by blocks. We first par-
tition the search space by blocks containing 4k l-mers. This
results into l-mers that share the same (l k)-prefix characters

where 2<k<l. Since every row in the search space represents
exactly 32 l-mers (32-bit integers), the height of every block
is computed using (4k/32) (see Figure 3 for an example of a
partitioned search space). Additionally, any two l-mers within a
block had at most k hamming distance value between them.

Fig. 3. Illustration of the block partitioning of a 412 search space. There are 45 l-mers in each block and has a height of 32. The illustration shows
the first 3 blocks only

2017 Int. J. Tec. Eng. Stud. 130

We process the testing of candidate motifs now by blocks.
If candidate motifs x and y are within a block and x has been
eliminated as a candidate motif in sequence Si(n

′ ≤ i ≤ n),

we can filter out l-mers z ∈ Si where dH(x, z)>d + k. We
collect the remaining l-mers in Si and use them for testing the
remaining candidate motifs in the block along with the other
l-mers in the remaining sequences in {S′

n, S
′
n+1, ..., Sn} {Si}.

The theorem below formalizes the main property used in this
speedup technique.

Theorem 1. Let x and y be l-mers in a block in the search
space containing 4k l-mers. Let d be the number of allowed
mutations in the problem instance. Let z be another l-mer. If
dH(x, z)>(k + d) then dH(y, z)>d, and therefore z is not in
N(y, d).

Proof. Using proof by contradiction, we first suppose
that dH(y, z) ≥ d. Since the l-mers x and y belong to the same
block, then dH(x, y) ≤ k. We use these bounds in the triangle
of inequality dH(x, z) ≤ dH(x, y) + dH(y, z) to derive the
result dH(x, z) ≤ k + d. This result contradicts the given
condition that dH (x, z)>(k + d). Hence, we are sure that
dH(y, z)>d.

The k-value affects the number of l-mers that is filtered
in a sequence. The lower its value, the larger the number of
filtered l-mers and faster candidate motif testing will be. But
since k also affects the number of l-mers in a block, the lower
its value, the fewer the candidate motifs that might benefit from

the speedup technique. In our implementation, we use k = 5
where every block has 32 rows of 32 bit flags representing a
total of 45 l-mers.

Pre-Computation of Mismatch Values
The EMS-GT2 uses the hamming distance computation

heavily during the Test phase. As discussed earlier for the
original EMS-GT, the hamming distance of two binary repre-
sented l-mers, can be efficiently computed using the Boolean
operator XOR. In EMS-GT2, instead of repeatedly counting
these nonzero pairs of bits every time we compute the hamming
distance, we use a pre-computed lookup table to help reduce
computational time. A naive pre-computation of these nonzero
pair counts for all possible l-mers (each represented by 2l bit
values) will introduce an unacceptable overhead computation
time when l is sufficiently large, i.e., when l >= 10 (based on
actual runs on our current machine configurations). A more
efficient approach is to pre-compute only up to l-mers of length
l′ < l, which requires b = 2l’ number of bits. Then we deter-
mine the hamming distance by looking up the nonzero counts
in the XOR results, b number of bits at a time, as described in
Algorithm 1. In our experimentation the maximum required bits
to represent l-mers are 34 bits (for (17, 6)-instance). Given this,
we pre-compute up to 18 bits (l’=9) values only and use the
lookup table twice for the computation of the actual hamming
distance between any given pair of l-mers.

Algorithm 1: Shows the improved way of computing the mismatch value for the Hamming distance computation

Performance of EMS-GT with Speedup Techniques
The EMS-GT2, EMS-GT, and qPMS9 were evaluated

in terms of actual runtime on an Intel Xeon, 2.10 Ghz ma-
chine. The performance of each algorithm was averaged over

20 synthetic datasets for each (l, d)-challenge instance where
l ≤ 17. Table 2 shows the runtime results between EMS-GT2
vs. EMS-GT while Table 3 shows the runtime results between
the EMS-GT2 vs. the qPMS9.

131 M. J. D. Ronquillo, P. L. Fernandez, - EMS-GT2: An improved exact solution 2017

TABLE 2
EMS-GT AND EMS-GT2 RUNTIME EVALUATION

(l, d) EMS-GT EMS-GT2 % Speedup
(9, 2) 0.04 s 0.05 s -
(11, 3) 0.17 s 0.26 s -
(13, 4) 1.03 s 0.82 s 20.3%
(15, 5) 12.39 s .43 s 15.8%
(17, 6) 143.87 s 111.22 s 22.6%

The additional speedup techniques become more ef-
fective as the l value in the (l,d)-instance grows. For every
(l,d)-challenge instance mentioned where l ≥ 13, EMS-GT2
has improved the runtime over the EMS-GT by at least 15%.
Unfortunately, the speedup techniques in EMS-GT2 failed to
compensate for their additional overhead computations in both
(9, 2) and (11, 3) challenge instances and failed to improve
the overall runtime of the implementation. Previous imple-
mentations of the original EMS-GT failed to beat qPMS9 in

(17, 6)-challenge instance. The proposed EMS-GT2 not only
produced improved runtimes but also succeeded in beating the
qPMS9 in this challenge instance. The improved EMS-GT
is now faster than the state-of-the-art qPMS9 in all of the (l,
d)-challenge instances where l ≤ 17. Even though the imple-
mentation of EMS-GT can only run in (l, d)-challenge instances
where l ≤ 17 because of computer memory constraint, studies
have shown that the typical length of motifs is around 10 Base
Pairs (BP) [4] anyway.

TABLE 3
EMS-GT2 AND QPMS9 RUNTIME EVALUATION

(l, d) qPMS9 EMS-GT2 % Speedup
(9, 2) 0.60 s 0.05 s 91.6%
(11, 3) 1.26 s 0.26 s 79.3%
(13, 4) 4.58 s 0.82 s 82.0%
(15, 5) 25.73 s 10.43 s 59.4%
(17, 6) 123.17 s 111.22 s 9.7%

CONCLUSION AND RECOMMENDATIONS
We have presented EMS-GT2, an improved exact so-

lution for the planted motif search problem. EMS-GT2 was
able to efficiently test candidate motifs within the same block
by filtering out l-mers using a property of the search space
array that we have discovered and proven in this paper. The
previous implementation of EMS-GT already outperforms the
state-of-the-art algorithm qPMS9 in (l, d)-challenge instances

(9, 2), (11, 3), (13, 4) and (15, 5) but failed to beat qPMS9 in
(17, 6)-challenge instance. EMS-GT2 improved the original
algorithm’s performance on (13, 4), (15, 5) and (17, 6) and
was able to beat qPMS9 in all (l, d)-challenge instances where
l ≤ 17.

Declaration of Conflicting Interests
No conflicts of interest are present in the current study.

REFERENCES

[1] S. Rajasekaran, S. Balla and C. H. Huang, “Exact algorithms for planted motif problems,” Journal of Computational Bio-
logy, vol. 12, no. 8, pp. 1117-1128, 2005.

[2] P. A. Evans, A. D. Smith and H. T. Wareham, “On the complexity of finding common approximate substrings,” Theoretical
Computer Science, vol. 306, no. 1, pp. 407-430, 2003.

[3] M. C. I. D. Sia, J. Q. Nabos and P. L. Fernandez, “An efficient exact solution for the (l, d)-planted motif problem,” in
8th AUN/SEED-Net Regional Conference on Electrical and Electronics Engineering, Manila, Philippines, Nov. 16-17,
2015.

[4] A. J. Stewart, S. Hannenhalli and J. B. Plotkin, “Why transcription factor binding sites are ten nucleotides long,” Genetics,

2017 Int. J. Tec. Eng. Stud. 132

vol. 192, no. 3, pp. 973-985, 2012.

[5] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald and J. C. Wootton, “Detecting subtle sequence
signals: A Gibbs sampling strategy for multiple alignment,” Science, vol. 262, no. 5131, pp. 208-214, 1993.

[6] T. L. Bailey, N. Williams, C. Misleh and W. W. Li, “MEME: Discovering and analyzing DNA and protein sequence motifs,”
Nucleic Acids Research, vol. 34, pp. W369-W373, 2006.

[7] H. Buhler and M. Tompa, “Finding motifs using random projections,” in proceedings of the Fifth Annual International
Conference on Computational Biology, New York, NY, 2001, pp. 69-76.

[8] H. Huo, Z. Zhao, V. Stojkovic and L. Liu, “Combining genetic algorithm and random projection strategy for (l, d)-motif
discovery,” in Fourth International Conference on Bio-Inspired Computing, Beijing, China, Oct. 16-19, 2009. pp. 1-6.

[9] P. A. Pevzner and S. H. Sze, “Combinatorial approaches to finding subtle signals in DNA sequences,” in International
Conference on Intelligent Systems for Molecular Biology, San Diago, CA, Aug. 19-23, 2000.

[10] U. Keich and P. Pevzner, “Finding motifs in the twilight zone,” Bioinformatics, vol. 18, no. 10, pp. 1374-1381, 2002.
[11] A. Price, S. Ramabhadran and P. A. Pevzner, “Finding subtle motifs by branching from sample strings,” Bioinformatics,

vol. 19, no. 2, pp. 149-155, 2003.
[12] G. Z. Hertz and G. D. Stormo, “Identifying DNA and protein patterns with statistically significant alignments of multiple

sequences,” Bioinformatics, vol. 15, no. 7, pp. 563-577, 1999.
[13] J. Davila, S. Balla and S. Rajasekaran, “Fast and practical algorithms for planted (l, d) motif search,” IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics (TCBB), vol. 4, no. 4, pp. 544-552, 2007.
[14] H. Dinh, S. Rajasekaran and V. K. Kundeti, “PMS5: An efficient exact algorithm for the (l, d)-motif finding problem,” BMC

Bioinformatics, vol. 12, no. 1, pp. 01-10, 2011.
[15] S. Bandyopadhyay, S. Sahni and S. Rajasekaran, “PMS6: A fast algorithm for motif discovery,” International Journal of

Bioinformatics Research and Applications 2, vol. 10, no. 4-5, pp. 369-383, 2014.
[16] H. Dinh, S. Rajasekaran and J. Davila, “qPMS7: A fast algorithm for finding (l, d)-motifs in DNA and protein sequences,”

PloS One, vol. 7, no. 7, pp. 01-08, 2012.
[17] M. Nicolae and S. Rajasekaran, “Efficient sequential and parallel algorithms for planted motif search,” BMC Bioinformatics,

vol. 15, no. 1, pp. 01-10, 2014.
[18] M. Nicolae and S. Rajasekaran, “qPMS9: An efficient algorithm for quorum planted motif search,” Scientific Reports, vol.

5, pp. 01-017, 2015.
[19] A. M. Carvalho, A. T. Freitas, A. L. Oliveira and M. F. Sagot, “A highly scalable algorithm for the extraction of cis-

regulatory regions,” in 3rd Asia-Pacific Bioinformatics Conference, Singapore, Jan. 17-21, 2005.
[20] N. Pisanti, A. M. Carvalho, L. Marsan and M. F. Sagot, “RISOTTO: Fast extraction of motifs with mismatches,” in Latin

American Symposium on Theoretical Informatics, Valdivia, Chile, March 20-24, 2006, pp. 757-768.
[21] M. Sagot, “Spelling approximate repeated or common motifs using a suffix tree,” in Lecture Notes in Computer Science, C.

L. Lucchesi and A. V. Moura, Eds. Berlin, Germany: Springer.
[22] E. Eskin and P. A. Pevzner, “Finding composite regulatory patterns in DNA sequences,” Bioinformatics, vol. 18, no. 1, pp.

S354-S363, 2002.
[23] F. Y. Chin and H. C. Leung, “Voting algorithms for discovering long motifs,” in 3rd Asia-Pacific Bioinformatics Conference,

Singapor, Jan. 17-21, 2005, pp. 261-271.
[24] N. S. Dasari, R. Desh and M. Zubair, “An efficient multicore implementation of planted motif problem,” in International

Conference on High Performance Computing and Simulation (HPCS), Caen, France, June 28- July 2, 2010, pp. 9-15.

— This article does not have any appendix. —

