This article was downloaded by: /.)
Publisher: KKG Publications

Check for
updates

International Journal of Key Knowledge Generation

Tec h n °| o n n d Publication details, including instructions for author and
9“ subscription information:

http://kkgpublications.com/technology/

[] [} []
E"‘Jmee"ng ﬂ"dle’ A Web Serverless Architecture for Buildings Modeling

ENRICO MARINO !, DANILO SALVATI 2, FEDERICO SPINI 3, CHRISTIAN
VADALA 4

L3 Department of Engineering, Roma Tre University, Rome, Italy
2.4 Department of Mathematics and Physics, Roma Tre University, Rome, Italy

Published online: 22 June 2017

To cite this article: E. Marino, D. Salvati, F. Spini and C. Vadala, “A web serverless architecture for buildings modeling,”
International Journal of Technology and Engineering Studies, vol. 3, no. 3, pp. 93-100, 2017.
DOTI: https://dx.doi.org/10.20469/ijtes.3.40001-3

To link to this article: http://kkgpublications.com/wp-content/uploads/2017/3/IITES-40001-3.pdf

PLEASE SCROLL DOWN FOR ARTICLE

KKG Publications makes every effort to ascertain the precision of all the information (the “Content”) contained in the publications
on our platform. However, KKG Publications, our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the content. All opinions and views stated in this publication are not
endorsed by KKG Publications. These are purely the opinions and views of authors. The accuracy of the content should not be
relied upon and primary sources of information should be considered for any verification. KKG Publications shall not be liable for
any costs, expenses, proceedings, loss, actions, demands, damages, expenses and other liabilities directly or indirectly caused in
connection with given content.

This article may be utilized for research, edifying, and private study purposes. Any substantial or systematic reproduc-
tion, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly
verboten.

http://crossmark.crossref.org/dialog/?doi=10.20469/ijtes.3.40001-3&domain=pdf
http://kkgpublications.com/technology/
https://dx.doi.org/10.20469/ijtes.3.40001-3
http://kkgpublications.com/wp-content/uploads/2017/3/IJTES-40001-3.pdf

International Journal of Technology and Engineering Studies

KKG PUBLICATIONS

vol. 3, no. 3, pp. 93-100, 2017

IJTES

A WEB SERVERLESS ARCHITECTURE FOR BUILDINGS MODELING

ENRICO MARINO !* DANILO SALVATI 2, FEDERICO SPINI 3, CHRISTIAN VADALA *

1.3 Department of Engineering, Roma Tre University, Rome, Italy

2.4 Department of Mathematics and Physics, Roma Tre University, Rome, Italy

Abstract. This research aims to develop a Web-based buildings’ modeling tool which overcomes the performance

Keywords:
Modeling

Serverless Architecture
User Collaboration

and development difficulties relying on a unidirectional data flow design pattern and a serverless architecture,
respectively. This paper introduces an effective Web architecture for buildings’ modeling that leverages the serverless
pattern to dominate the developing complexity. The resulting front-end application, powered by Web Components
and based on unidirectional data flow pattern, is extremely customizable and extendible by means of the definition of

plugins to augment the UI or the application functionalities. As regards the modeling approach, it offers (a) to model

the building drawing the 2D plans and to navigate the building in a 3D first-person point of view; (b) to collaborate in

Received: 12 February 2017
Accepted: 10 April 2017
Published: 22 June 2017

real-time, allowing to work simultaneously on different layers of the project; (c) to define and use new building
elements, that are furniture or architectural components (such as stairs, roofs, etc.), augmenting a ready-to-use catalog.
This work suggests a path for the next-coming BIM online services, matching the BIM approach’s professional

collaboration requirements typical of the BIM approach with the platform that supports them the most: the Web.

INTRODUCTION

Nowadays we are seeing a relentless migration of soft-
ware products toward services accessible via the Web medium.
This is mainly due to the undeniable benefits in terms of ac-
cessibility, usability, maintainability and spreadability granted
by the Web medium itself. Nevertheless these benefits don’t
come without a cost: performance and development complexity
become major concerns in the Web environment.

In particular, due to the introduction of several ab-
straction layers it is not always feasible to “port” a desktop
application into the Web realm, an aspect to be taken into
account even for the relevant hardware differences among all
the devices equipped with a Web Browser. It can be even more
arduous to tackle the inherent distributed software architecture
(a client/server one at least) induced by the Web platform. Nev-
ertheless increasingly rich and complex Web applications began
to appear, supported by the enriched HTML5 APIs, which
thanks to the WebGL [1] (which enables direct access to GPU),
Canvas [2] (2D raster APIs) and SVG [3] (vectorial drawing
APIs), have paved the way for the entrance of Web Graphic
Applications.

In this work we report about our endeavor toward the
definition of a Web-based buildings’ modeling tool which
overcomes the aforementioned performance and development
difficulties relying on a unidirectional data flow design pattern
and on a serverless architecture, respectively.

A serverless architecture, on the contrary of what the

*Corresponding author: Enrico Marino
T Email: salvati .danilo@gmail.com

name may suggest, actually employs many different specific
servers, whose operation and maintenance don’t burden the
project developer(s). These several servers can be seen as third
party services (typically cloud-based) or functions executed
into ephemeral containers (may only last for one invocation)
to manage the internal state and server-side logic. Real-time
interaction among users jointly working on the same modeling
project, is for example achieved via a third party APIs for
remote users’ collaboration.

The tool user interface, entirely based on web compo-
nents pattern, has been kept as simple as possible: the user
is required to interact mainly with two-dimensional symbolic
placeholders representing parts of the building, thus avoiding
complex 3D interactions. The modeling complexity is thus
moved from the modeler to the developer which fills out an
extendible catalog of customizable building elements. The
modeler has only to select the required element, place and
parametrize it according to the requirements. It is obvious
that a large number of building elements has to be provided to
ensure the fulfillment of the most modeling requirements. The
remainder of this document is organized as follows:

Section 2 provides an overview of related work. Sec-
tion 3 reports about the application user experience. Section
4 presents adopted architectural solutions. Finally, Section 5
contains some conclusive remarks.

(© 2017 The Author(s). Published by KKG Publications. This is an Open Access article distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0

International License.

salvati.danilo@gmail.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

2017 Int. J. Tec. Eng. Stud. 94

RELATED WORK

In this section we highlight some remarkable experi-
ences aligned with the aim of our project. There are plenty of
desktop applications worth to be mentioned and analyzed, but
in the following we deliberately focus on Web-based works.

Shapespark offers a web viewer of remarkable quality
that allows the user to move inside a virtual 3D indoor envi-
ronment. Modeling phase is served in the form of plugins for
different Desktop proprietary solutions.

Playcanvas is a complete and powerful web-based game
creation platform which offers an integrated physical engine and
a whole set of functionalities to support modeling. Although
powerful and relatively simple to use, it doesn’t focus on build-
ings’ modeling. Floorplan has been developed by Autodesk
specifically for the architectural field, and for indoor renewal
projects in particular. It is a 2D modeling tool which offers also
a 3D walk-through mode.

[4] introduced a Web modeling and baking service for
indoor environments. The modeling tools expose a 3D inter-
action the user may not be accustomed to, a hitch we tried to
outflank by avoiding 3D modeling interaction and let the user
only face a “metaphoric” 2D interface. As regards support for
users’ collaboration it is worth to be mentioned the Operational
Transformation (OT) approach [5]: a group of nodes exchanges
messages without a central control point. Two main proper-
ties hold in this setup: (i) changes are relative to other user’s
changes (it works on “diffs”) and (ii) no matter in which order
concurrent changes are applied, the final document is the same.
In our serverless architecture however, external (third parties)
central synchronization points are allowed, making complexity
introduced by protocols like OT less effective.

APPLICATION EXPERIENCE

The application experience focuses on supporting the
user in a building modeling task. The exploited modeling
approach requires the user to face as much as possible a two-
dimensional interface which allows her to define the plan and
to place complex architectural elements (here called building
elements) on it. Such building elements can be found in a
pre-filled catalog, and when required can be further configured
and customized through a side panel. This modeling approach
moves part of the complexity toward the developer of the cus-
tomizable building elements, leaving to the final user the task to
place and to configure the employed elements. A rich catalog
of elements is thus crucial to answer to the users’ modeling
requirements.

Once the floor-plan has been defined according to the
place-and-configure approach, the system can automatically
generate a 3D model which can be explored externally or in

first person view, as shown in Figure 1f. Each building element
in fact comprises of either a 2D generating function (2Dgf)
or a 3D generating function (3Dgf), used to obtain models
used in the 2D floorplan definition and in 3D generated model
respectively. The tool also has support for layers the user can
exploit to organize her project, for example to group together
semantically homogenous elements.

Building Elements

Along with the aforementioned 2D and 3D generating
functions, an element is fully specified by its univocal name
and its properties, used by the user for customization. Each
building element inherits from its prototype (one and only one).
The prototype maps both the inherent characteristics and user
interactions needed to add the element to the project and/or
configure it.

The catalog comprises then of four different types of
elements:

Lines. An element which belongs to this category is
drawn selecting a start point and an end point. To move it one
can drag one of the end-points or can drag the entire line. An
example: a wall.

Openings. An opening is an element that is linked to
a line-element, making a “hole” on it. The user creates a new
opening by dragging an opening-element on a chosen line-
element. Examples are doors and windows.

Areas. An area is an element which may be generated
by defining the boundary vertices. A room basement is a good
example of an area-element, which is automatically generated
from walls (that are line-elements).

The algorithm for the basement computation follows
these phases:

(i) search of biconnected component by means of
Hopcroft-Tarjan algorithm (see [6]);

(ii) removal of edges that are not part of a biconnected
component;

(iii) search of all cycles through an algorithm that does a
double check of each edge sorted by angle;

(iv) search of maximal cycles correspondent to perimeter
edges by an application of Gauss’s area formula;

(v) removal of maximal cycles.

Object. An element that is freely inserted into space
with a drag and drop interaction. Examples are tables and chairs.

User Interface

Figure 1a shows the application’s user interface. It con-
sists of the following components:

Content-area: It displays the main content and it is
chosen by the user. Developers can extend the available content-

KKG PUBLICATIONS

95 E. Marino, D. Salvati, F. Spini, C. Vadala, - A web serverless architecture 2017

areas and so the functionalities of the system using techniques
described in Section 4. Those which were already implemented
by us are: (i) building elements catalog viewer (figure 1b), (ii)
2D drawing area (figure 1d), (iii) 3D viewer (figures 1c and le),
(iv) 3D first person viewer (figure 1f).

Toolbar: It contains buttons mapping all operations the

ik

Cootazt-amms Sidabnr

user can do. Type and number of buttons change according to
the content-area chosen.

Sidebar: It contains the list of building elements added
to the current layer and the list of layers of the model. More-
over it permits to customize properties’ values for the selected
elements.

gl

(R B

Fig. 1. User Interface: (a) main interaction areas; (b) building elements catalog; (c) interaction with a building; (d) 2D interaction with a floor plan;

(e) 3D interaction from external point-of-view (f) 3D interaction from a first-person point-of-view

Serverless Architecture

According to [7], the deployed serverless architecture
makes extensive use of third party services, or “as-a- Service-
like” components, that replace ad-hoc software and hardware
and fulfill the same tasks.

In particular we have been able to delegate the following
aspects to external and specialized services: application distribu-
tion, user management, model generation (heavy computation),
user collaboration and state storage.

Distribution. To serve the application resources
(JavaScript files, images, etc.) we rely on a KeyCDN (a Content

Delivery Network) and avoid any kind of webserver. This

implies high availability and performance, but also represents a
centralized method to upgrade client application without any
user explicit action: once files have been updated on the CDN,
after the subsequent reload of the web application, any user is
provided with the updated version of the application.

User Management. User management activities, which
requires a backend running code to accomplish user subscrip-
tion and authentication, are delegated to Auth05, a Backend-
as-a-Service (BaaS) specialized on accounting.

Model Generation. The generation of 3D models may
require a while. In that case, especially on low-performing
hardware, the computation can’t be performed on the client-side,

KKG PUBLICATIONS

2017 Int. J. Tec. Eng. Stud. 96

but rather on a powerful server which generates the model on
demand, taking as input the parametrization made by the user
through the web interface.

On this purpose we chose to move this computation on
AWS Lambda, a Function-as-a-Service (FaaS) on which runs
the Python code responsible to generate 3D models, that auto-
matically scale on the basis of the number of model generation
tasks.

Users’ Collaboration. As regard the users’ collaboration,
it requires some sort of synchronization among them. To use
a single point of synchronization results in a much simpler
architecture, so instead of relying on complex peer-to- peer
architecture, which however would be a good choice aligned
with the serverless paradigm we are pursuing, we opted for a
synchronization mechanism based on Firebase, a Backend-as-a-
Service working as a coordination manager.

It broadcasts each change made by a user to all the
others. Conflicts are avoided exploiting layers: each user locks
the layer she is working on.

State Storage. The whole state of a modeling project is
represented as a JSON document. To save and reload project
state the user can easily download the corresponding JSON
document, or, to remain “in the Cloud”, the same document can
be stored on a DataBase-as-a-Service (DBaaS), Orchestrate for
example.

In this case we only rely on endpoints to save and to
load a document: on a save event, client application serializes
the state and passes it to the DBaaS which stores it, ready to
serve it on a load request issued at a later time. Once the client
receives back the document, the state is automatically restored
thanks to its reactive architecture.

The real support for serverless architecture is here not
provided by the service that actually stores the document, which
as stated can be replaced even with a file download, but more
precisely, by the software architecture that supports serialization
and a reloading of the state. This architecture addresses two
main concerns:

(i) centralized immutable state and

(i1) a reactive Ul (i.e. modifications of the state reflect
automatically on the user interface).

Centralized Application State

The application state is modeled using the data structure
shown in Listing 1. It is essentially a collection of layers, each
containing a collection of vertices, lines, areas and objects, each
one of which is captured in a structure composed by:

(i) information required by the object prototype;

(ii) references mapping the relationship to other objects;

(iii) metadata, namely the object customization entry
point. Listings 2 and 3 give examples of data structures adopted
to model a vertex and a line, respectively. Information redun-
dancies are exploited to decrease access times. Collections of
objects are indexed by id thus allowing lookup in constant time,
The selected field of each layer, grants direct access to selected
elements without searching. The state can be loaded one layer
at a time to support state fragmentation thus allowing to deal
with very big building modeling project.

Unidirectional data flow. The described data structure
represents the centralized state required by the unidirectional
data flow pattern [8] exploited by the application via Redux.js
library.

The pattern prescribes that the state may be modified
only by specific actors, called reducers, whose activities are
triggered by specific actions which contain all the information
needed by each reducer to accomplish the state change. Each
application feature has to be implemented therefore as a couple
of well-isolated pieces of code (action/reducer).

Preliminary experiments on 2D drawing tools, in fact,
highlighted the development complexity of an application of
this kind in terms of large internal state modified by several user
interactions, which was to be listened to and applied, resulting
in a high coupling level between application logic and user
interface. In our setup instead we defined a state engine, which
represents the application logic, comprising of actions and
reducers, and encapsulates the centralized state. On this layer
can transparently rely different interfaces.

KKG PUBLICATIONS

97 E. Marino, D. Salvati, F. Spini, C. Vadala, - A web serverless architecture 2017

1 1
T "width™: 2000, // canvas width
I "height": 2000, // canvas height
L "unit": "om™, S unit of measprement
: "amlectadlager: "layer-17, /f corrpant layer
i "layers”: {
T "layer-1-: {
¥ "name": "defanlt”,
] "id": “layer-1%,
10 "altitode™: 0O,
11 "opacity": 1,
12 "wizible": tros,
13 "wvertices": |
e “HIR=SSYFa0x™: {...}
13 ' e
15 }r
1T "lines": |
15 “"HypedSFEAEx™: {.._}
] o SR
= Fr
z "opening=": |
z "r1jaB¥OIg™: {...}
= P R
: Fe
= "arsas": |
x "BygloFE0Ie": {...}
4 Y o
2 Fe
] "obhjects": {
] “rkFOESTE="z {.._..}
5] A
t5d br
E fiselected element
E "selected™: |
= “vrertice=s": [].
e “lines": [].
i “opening=": [].
£ "area=s": []1.
b "objects”: ["rkEOAETE="]
&
&]
= b
- 1
Fig. 2. JSON serialized state, overall structure
Lo
2 "id": "HJReS59YFBUx",
3 e i
4 g Faalf sl B
5 "prototype": "vertices",
g "selected": false,
7 "lines": ["Hype39FK88x", "Slw-hgRELB8e"],
H] "areas": ["BygloFEUIe"]
|}
Fig. 3. JSON serialized state, vertex structure
Immutability pattern. Immutability pattern [9] is also whose changes are applied as follows: (i) clone the previous
applied, to avoid side effects on state changes performed by state s obtaining a new state s’; (ii) apply changes on the cloned
reducers. The state can be seen as an immutable tree structure state s’; (iii) Update reference from s to s’.

KKG PUBLICATIONS

2017

Int. J. Tec. Eng. Stud.

98

L {

2 "id": "Hype99FK88x",

3 "type": "linear",

4 "prototype™: "lines",

5 "vertices": ["HJAe59YFBUx", "rllZ59tKIUg"],
["openings": ["rljaKYUIg", "BJVZZ2MOFIIx"],
7 "selected": false,

E "properties": {

9 "height": 300,

10 "thickness™": 20,

11 "cowverAv: "bricks":;

12 "cowerB": Tbricks”

13 }

Fig. 4. JSON serialized state, line structure

It is worth noting that this approach provides out-of-the-
box support for undo/redo operations: an older/newer state can
be restored by means of a replacement of the current state with
the previous/next one.

Despite its simplicity, this pattern can nevertheless lead
to memory waste, due to the several copies of the state that must
be held in memory. We addressed this issue using Immutable.js,
a library which exploits structural sharing via hash maps tries
and vector tries, thus minimizing the need to copy or cache
data.

User’s interaction. We modeled the user’s interaction as
a Finite State Machine (FSM) where each node corresponds
to a mode (i.e. to a possible application state), and each edge
corresponds to an action (e.g. a user’s interaction) that can be
set off in the current state, (typically a JavaScript event mapping
a user’s interaction such as click or mousemove).

Figure 5 shows the FSM relative to the wall drawing
interaction. The three nodes correspond to three modes: (i)

node idle, the waiting mode of the application where no action
has been taken yet; (ii) node waiting_drawing_wall, where the
user has selected wall design tool but he hasn’t started the draw
phase yet; (iii) Node drawing_wall, where the user has placed
the starting point of the wall.

Reactive Component Based Ul

The UI has been developed following the Web Com-
ponents pattern [10], supported by React.js framework. The
main idea is to define the frontend application as a collection of
independent components, each one referencing a specific subset
of the centralized state and able to render itself according to
the actual values of that portion of the state. Web Components
spawn from for high level generic containers, like the toolbar
or the catalog, to very fine grained ones, buttons for example.
The most interesting are the viewers of the building model: the
2D-viewer and the 3D-viewer.

[idle J“l—
draw unselect
wall instrument

—P[waiting drawing wall]—
end i begin
drawing drawing

—[drawing wall]-—

update drawing

Fig. 5. Subgraph of the state machine that shows a wall creation

KKG PUBLICATIONS

99 E. Marino, D. Salvati, F. Spini, C. Vadala, - A web serverless architecture 2017

Viewers. A viewer is a pivotal component since it shows
the building model and allows user’s interaction with it. We
built a 2D-viewer and a 3D-viewer.

The 2D-viewer invokes the 2Dgf of the building ele-
ments added to the model and renders its output using SVG
elements. To cope with frequent updates coming from the user’s
drawing interaction, it exploits the Virtual DOM [11], which
permits to update only the modified part thus avoiding complete
redrawing of the scene. To perform pan and zoom operations,
typically necessary in this kind of tool, we develop an ad-hoc
React component named ReactSVGPan- Zoom. The 3D-viewer
invokes the 3Dgf of the building elements added to the model
and renders its output using WebGL primitives via Three.js. It
has been implemented a diff and patch system, standardized
in [12]: Three.js objects are associated with building elements
inside the state, so every time the user triggers an action that
results in a state alteration, the application computes the differ-
ence between the old state and the new one and changes only
the affected object. In particular we can have the following
operations: (i) add, (ii) replace and (iii) remove.

Figure 3 shows the interaction among viewers, state-

engine and catalog. A viewer reacts to any state change updating
its internal state and displaying the changes applied to the model.
The generating functions are pulled from the catalog where a
descriptor for each building element can be found.

CONCLUSION AND RECOMMENDATIONS

In this work we outlined a serverless architecture to sup-
port buildings’ modeling in a Web environment. The serverless
architecture that gives benefits in terms of availability, relia-
bility, scalability, easiness of deployment, maintainability and
upgradability is obtained by implementing the application logic
as a client-side only centralized state Web application exploiting
the unidirectional data flow pattern. This approach allows for
an easy-to-serialize state (in the form of a JSON document)
that can be pushed on a third party document oriented DB-as-a-
Service and loaded back in the frontend reactive architecture,
which transparently reloads the state once its serialized version
is passed in. The application itself is served by a CDN thus
avoiding any need for web server. Offline routines rely on
Function-as-a-Service platform as well as users management
and collaboration features.

STATE ENGINE

State

' !

[20 VIEWER] [30 VIEWER J ® e o AMNOTHER VIEWER
T

,,

Fig. 6. Viewers’ architectural scheme

Services costs. As regards costs to be paid for third
party services, we have estimated an expense of less than 100$
per month for about 5000 users, for the steady state operation.
Currently however we have not exceeded the free tier offered
by each one of the exploited services.

Metior project. The described architecture has been
successfully employed by the authors as foundation for the
Metior project [13], a tool to support selective deconstruction
of buildings in the pursuit of a “zero waste” model.

As an outcome of this experience we will be able to
gather some usability tests, useful to further improve the users’
experience.

Future developments. At this stage of development each
single layer of the state is required to fit in memory. Although

this shortcoming can be easily circumvented by slitting up a big
layer, we are currently addressing a practical way to scale also
inter-layer, by allowing a selective loading of the layer content.

Declaration of Conflicting Interests
No competing interests are declared by the authors.

Acknowledgments

Authors would like to thank GEOWEB S.p.A., a web
service company owned by Sogei S.p.A. and CNGeGL Italian
National Board of Quantity Surveyors, for supporting this work.
Thanks are extended to Stefano Perrone for developing the
models shown in the Figures 1d, le, and 1f.

KKG PUBLICATIONS

2017 Int. J. Tec. Eng. Stud. 100

REFERENCES

[1] D.Jackson. (2014). WebGL specification [Online]. Available: https://goo.gl/In7SNw

2] J. Munro, J. Mann, 1. Hickson, T. Wiltzius and R. Cabanier. (2015). HTML canvas 2D context [Online]. Available:
https://goo.gl/ut02Cw

[3] P. Dengler, A. Grasso, C. Lilley, C. McCormack, D. Schepers and J. Watt. (2011). Scalable Vector Graphics (SVG) 1.1.
[Online]. Available: https://goo.gl/kj61ix

[4] F. Spini, E. Marino, M. D. Antimi, E. Carra and A. Paoluzzi, “Web 3D indoor authoring and VR exploration via texture
baking service,” in proceedings of the 21st International Conference on Web3D Technology, Anaheim, CA, pp. 151-154,
July 22-24, 2016.

[5S] C. A.Ellis and S. J. Gibbs, “Concurrency control in groupware systems,” in ACM SIGMOD International Conference on
Management of Data, Portland, OR, pp. 399-407, 1989.

[6] J. Hopcroft and R. Tarjan, “Algorithm 447: Efficient algorithms for graph manipulation,” Communications of the ACM, vol.
16, no. 6, pp. 372-378, 1973.

[7] M. Roberts. (2016). Serverless architectures [Online]. Available: https://goo.gl/K9ezlc

[8] T.Hos. (2016). Reactivity, state and an unidirectional data flow [Online]. Available: https://goo.gl/qUTrlg

[9] J. Long. (2015). Immutable data structures and JavaScript [Online]. Available: https://goo.gl/ THHovV

[10] A.Russell. (n.d). Web components and model driven views [Online]. Available: https://goo.gl/LjmckY

[11] J. Rotolo. (2015). The virtual DOM vs the DOM [Online]. Available: https://goo.gl/UBb70G

[12] P. Bryan and M. Nottingham. (2013). JavaScript object notation (JSON) patch [Online]. Available: https://goo.gl/fl8y6e
[

13] E. Marino, F. Spini, A. Paoluzzi, D. Salvati, C. Vadala, A. Bottaro and M. Vicentino, “Modeling semantics for building
deconstruction,” in proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, Porto, Portugal, pp. 274-281, Feb. 27-March 01, 2017.

— This article does not have any appendix. —

KKG PUBLICATIONS

https://goo.gl/ln7SNw
https://goo.gl/ut02Cw
https://goo.gl/kj61ix
https://goo.gl/K9ezLc
https://goo.gl/qUTrlg
https://goo.gl/THHovV
https://goo.gl/LjmckY
https://goo.gl/UBb70G
https://goo.gl/fl8y6e

