
This article was downloaded by:
Publisher: KKG Publications

Key Knowledge Generation
Publication details, including instructions for author and
subscription information:
http://kkgpublications.com/technology/

Self-Aware Message Validating Algorithm for Preventing
XML-Based Injection Attacks

E. UMA1, A. KANNAN 2

Department of Information Science and Technology Anna University Chennai-25, India

Published online: 18 June 2016

To cite this article: E. Uma, A. Kannan, “Self-aware message validating algorithm for preventing XML-based injection attacks.”
International Journal of Technology and Engineering Studies, vol. 2, no. 3, pp. 60-69, 2016.
DOI: https://dx.doi.org/10.20469/ijtes.2.40001-3

To link to this article: http://kkgpublications.com/wp-content/uploads/2016/2/Volume2/IJTES-40001-3.pdf

PLEASE SCROLL DOWN FOR ARTICLE

KKG Publications makes every effort to ascertain the precision of all the information (the “Content”) contained in the publications
on our platform. However, KKG Publications, our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the content. All opinions and views stated in this publication are not
endorsed by KKG Publications. These are purely the opinions and views of authors. The accuracy of the content should not be
relied upon and primary sources of information should be considered for any verification. KKG Publications shall not be liable for
any costs, expenses, proceedings, loss, actions, demands, damages, expenses and other liabilities directly or indirectly caused in
connection with given content.

This article may be utilized for research, edifying, and private study purposes. Any substantial or systematic reproduc-
tion, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly
verboten.

http://crossmark.crossref.org/dialog/?doi=10.20469/ijtes.2.40001-3&domain=pdf
http://kkgpublications.com/technology/
https://dx.doi.org/10.20469/ijtes.2.40001-3
http://kkgpublications.com/wp-content/uploads/2016/2/Volume2/IJTES-40001-3.pdf

International Journal of Technology and Engineering Studies
vol. 2, no. 3, pp. 60-69, 2016 IJTES

SELF-AWARE MESSAGE VALIDATING ALGORITHM FOR PREVENTING
XML-BASED INJECTION ATTACKS

E. UMA 1∗, A. KANNAN 2

1, 2 Department of Information Science and Technology Anna University Chennai-25, India

Keywords:
XML
Web Services Security
Injection Attacks

Received: 06 February 2016
Accepted: 04 April 2016
Published: 18 June 2016

Abstract. A new XML-based injection filter is proposed in this research work to prevent and detect injection attacks.
The validation approach is used as a security mechanism in this research work and presents an XML-based injection filter
framework. The self-aware message validating algorithm estimates the causes of incoming queries dynamically. The
proposed algorithms have been tested and evaluated against various XML-based attacks. The conventional firewall and
filters are lacking in detecting and preventing XML-based attacks because these attacks contain huge volumes of data and
are cluttered in nature. Therefore, a new XML-based injection filter is proposed in this research work to prevent and detect
attacks. The results show that the algorithm is very robust against attacks. This filter prevents significant attacks by using a
parameter tampering filter, coercive parsing filter, oversized message filter, message replay filter, and semantic URL filter.

INTRODUCTION
Web Service attacks, generally called XML-based at-

tacks, occur at the SOAP message level and thus they are not
readily handled by existing security mechanisms in earlier
firewalls. So as to provide robust security mechanisms for Web
Services, XML filters have recently been introduced for Web
Services security. In this research, a framework for dynamic
XML filters is proposed, called self-aware message validating
filter for XML-based attacks, which supports detection and
protection of XML-based attacks in real-time.

A detailed design of the injection filter security model
has been provided by validating schema information of the
message with detection and protection policies. An oversized
message attack is a type of flooding attacks, where an attacker
creates enormous level of traffic to a Web Service to exhaust its
resources at the server side and parameter tampering attack can
crash the server by sending unacceptable parameters.

In this research work, the validation approach is used
as a security mechanism and presented a framework for XML-
based injection filter.

RELATED WORKS ON XML INJECTION FILTER FOR
WEB SERVICES

The dynamic programming algorithm used has its roots
in an algorithm introduced by [1]. The sequence comparison
problem has been mapped to shortest path problem in edit
graph. Now, the problem of finding a minimum-cost edit script
between two sequences is reduced to the problem of finding a
shortest path from one end of the edit graph to the other. DTD
schema comparison solution [2] was extended to XML Schema
Definition (XSD) schemas [3]. This work takes into account

semantic similarity of element as well as attributes names
in addition to considering structural similarity.

[4] detailed the importance of mod-security apache
server module to safeguard Web Services. The author has
shown configuring mod-security to extract required parameters
from the SOAP request using regular expressions and then
throw away requests containing suspicious values.

[5] attempted to integrate XML firewall with existing
Web Services security specifications.

[6] described the threat profile of Web Services environ-
ment. A set of conceptual attacks was introduced by another to
compromise Web Services.

[7] provided a comprehensive guide to security for Web
Services and Service-Oriented Architecture (SOA). They ex-
plained all recent standards that address Web Service security
standards, as well as recent research areas on access control for
simple and conversation-based Web Services and access control
for Web-based work flows.

ARCHITECTURE OF XML-BASED INJECTION FIL-
TER SERVICE

The architecture of the XML-based injection filter ser-
vice model is illustrated in Figure 1. As shown in the figure,
an injection filter lies between service consumers and a service
provider, and can be installed either on the same or a different
machine where the actual Web Services are deployed. It inter-
acts with service consumers through its User Interface (UI),
which is responsible for receiving requests from and sending
responses back to the login service.

∗Corresponding author: E. Uma
†Email: euma@annauniv.edu

c© 2016 The Author(s). Published by KKG Publications. This is an Open Access article distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License.

euma@annauniv.edu
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

61 E. Uma, A. Kannan - Self-aware message 2016

Fig. 1 . A framework for injection filter service

There are five major components supporting the filters,
namely oversized message filter, message replay filter, parame-
ter tampering filter, coercive parsing filter and semantic URL
filter, which process the incoming request and state-based infor-
mation, respectively. In the injection filter security model, input
validation and protection are the major features for providing
user access control, which ensures that only valid users are
allowed to access certain Web Services.

Parameter Tampering Filter
The attacker adjusts the parameters in a SOAP message

in an attempt to redirect the input validation in order to access
unauthorized information. A change in integrity of the param-
eters is to detour the input validation and gain unauthorized
access of some confidential functionality of Web Services. This
filter checks the XML schema definition of received message
for data type, null values. This filter checks the parameter for
valid data. If it fails, then, it throws an error to the sender once.

Coercive Parsing Filter
This filter verifies the namespaces and version mismatch

received in the WSDL and SOAP files. This filtering policy
used the fault values in SOAP fault code. The filter verifies
the received message for wrong format of SOAP message by
generating SOAP fault code. This filter blocks the input that
has a strange format.

Oversized Message Filter
The XML parsing of the service provider is directly

affected by the size of the SOAP message. As a consequence,
large amounts of Central Processing Unit (CPU) cycles are
consumed when presented with large documents to process. A
hacker can send a payload that is in alarming rate to exhaust
system’s resources. So, the filter is designed to refine the size
of the message, requisition resources presented in the incoming
message.

Message Replay Filter
A hacker can resend the SOAP message requests to

access the Web Service using other’s login credentials. This
kind of Web hacking will be escaped as a legitimate request
because the source IP address is valid, the network packet at-
tributes are valid and the HTTP request is well-formed. Hence,
the filter assigns an identifier for each incoming message and
stored into the database to identify the replayed message. After
that, the filter catches and matches the identifier of incoming
messages and uses the replay detection policy to identify and
reject messages which match an entry in the database of replay
detection filter.

Semantic URL Filter
The semantic URL attack is when the client manually retypes
the parameters of its request by keeping the URL’s structure but
altering its semantic meaning. This is protected by giving token

2016 Int. J. Tec. Eng. Stud. 62

and timestamp for expiration.

ALGORITHM OF SELF-AWARE MESSAGE VALIDA-
TION FOR XML-BASED INJECTION ATTACK FILTER

A Web Service communicates with other applications
over a network. There is no surety that the incoming message is
requested from legitimate user, though the incoming request is
coming from authorized IP address. Meanwhile, the intruder in-
cludes some parameter to gain some data or to redirect the flow
to some proprietary Web links. Based on the input information,
the XML Request Handler can detect and verify XML-based
attack in real-time.

Detection of XML-Based Injection Attacks
The XML request handler module is responsible for the dy-
namic detection and verification of the XML-based injection
attacks by checking both the SOAP message and the parameters
passed to a Web Service operation. The algorithm proposed by
the XML request handler module is depicted in Figure 2 and
explained how the input is treated as malformed input or not.
As shown in the figure, when a SOAP message with a valid user
request is sent to the XML request handler module, there the
input is refined in all filters to verify the attack.

Fig. 2 . Algorithm for XML-based injection filter

The process of detecting other types of XML-based
attacks involves two major steps, which are detection of mal-
formed SOAP messages and protection from attacks [8-10].
Malformed SOAP messages are detected using the SOAP mes-
sage validator. For example, to detect XML attacks, the handler
module analyzes for possible flooding requests and keeps track
of the allowable message size and the nesting depth in the
incoming XML messages.

Parameter Tampering Filter
In this filter, the received parameters are checked for data

type, number of parameters and null values. This filter checks
the parameter for valid data; if it fails, then it throws an error to
the sender once. Even if the sender continues, his misbehaving

with parameters leads to the disconnection of communication.
To solve this problem, the proposed XSS filter was created
with tamper checker function. It checks the arguments for null
values, data type, start element and end element of the received
request from the client.

Advantages
This filter protects the server from anomaly parameters and
unstructured form of XML document. This assists to guard
against the injection attacks, even for business Web Services
that do not implement any validation control. The Web Service
performs validation autonomously for the client.

63 E. Uma, A. Kannan - Self-aware message 2016

Coercive Parsing Filter
This attack is targeted on the standard structure of XML

documents. In Web Services, every document must be format-
ted according to the rules and regulations mentioned in the
W3C consortium. If any misplaced namespaces, any disparity
in version of SOAP or WSDL document will affect the com-
munication. This malformed attack stops the service provider
suddenly, after affected by enormous level of attacks.

Oversized Message Filter
Denial of Service attacks happened by exhausting re-

sources available in server side. Such attacks aim at reducing
service availability by exhausting the resources of the service’s
host system, like memory, processing resources or network
bandwidth. It is performed through query, a service using a very
large request message, which is called as over sized message.
Because of over sized message, the Web Service resources such
as CPU time, memory usage and database connections keep
busy. The filter was implemented to measure the size of the
incoming message.

Message Replay Filter
An attacker who attempts to resend SOAP requests to

repeat sensitive transactions is called the message replay attack.
Here, the client side message is assigned with an identifier and
time stamp then sent to the server for validation purpose. There-
after, the filter captures the identifier of incoming messages and
rejects messages that match an entry in the replay detection
database. If the message identifier is valid because of its nonex-
istence, the filter compares the message timestamp to its clock
time value for synchronization. If the message identifier has
unacceptable identifier or any time stamp mismatch then, the
message is rejected. This can be done by calculating elapsed
Time, cache Life Span and max Message Period. The time
tolerance is the acceptable value of time difference between the
sender and the maximum message period is configured as 600

seconds.

Semantic URL Attack Filter
This filter service acts to handle password reset request from the
client. In addition it is implemented to handle semantic URL
attack which is triggered by the legitimate user. The legitimate
user can also attack the server to retrieve other’s password
through the URL link by changing its parameters when he
received URL link for password reset. In this way the attacker
tries to modify the password of the other user. This filter sets
the nonce by generating a random number and assigns the time
stamp to use the request URL for limited time. The random
number generator needs a seed value to create the nonce. For
that, the system takes the process id as seed value as given below.

IMPLEMENTATION OF XML-BASED INJECTION AT-
TACK FILTER
Parameter Tampering Filter

The message validation validates each incoming request
message to ensure that it is well-formed XML, that it contains
all of the parts required by the service, and that the contents of
the message conform to an expected structure as defined by an
XML Schema Definition (XSD). Then the regular expression
checks to ensure that input contains only valid data and does
not contain malicious SQL, HTML, or Java Script code that
could lead to code injection attacks.

Then the service processes the request and responds
back to the client. If the request passes all validation checks
performed by the message validator, the service processes the
message. In this policy, the request size must be checked before
any other step. This implementation pattern uses policy asser-
tions to check for required message parts and to validate the
message schema. The following example policy file provides
an example of policy assertions for the service.

Fig. 3 . Policy assertions for the service

2016 Int. J. Tec. Eng. Stud. 64

In this policy file example, the <Action>, <Mes-
sageID>, and <To>elements are required on all incoming
request messages. XML document reader method and Excep-

tion handler are shown in Figures 3 and 4.

Fig. 4 . Custom policy assertion class validator for the received SOAP

Coercive Parsing Attack Filter
This filter protects Web Service attacks from intruders

by verifying the attack from exception handler and throws
exceptions to the client. The exception with corresponding IP
address is stored and maintained by the coercive parsing handler.
To identify the attacks the following attributes are required to
set. if (customHeader.MustUnderstand!=true l)
throw new MustUnderstandException (“SOAP header entry not
understood by processing party”); if (nameSpace.VersionMis-
match!=true)
throw new VersionMismatchException(“Invalid namespace
defined in SOAP envelope element r”);

Oversized Message Attack Filter
This filter prevents the service from processing request

messages that are larger than a specified size. This message

validation protects against denial of service attacks, but the
message validation must be very efficient when it conducts
its validation checks. This policy checks any access of local
resources of such as CPU. To achieve that, it sets the maximum
request size in the service’s configuration file to limit the size
of messages that the service will process. Then it compares
the size of the request to the value established for the max
Request Length attribute of the <http Runtime>element in
the application’s configuration file, which is specified in kilo
bytes. To limit the response length of the request, a value for
the timeout attribute of the response time element must be set in
the service’s Web config. file as shown in Figure 5. This value
should be set according to the largest response length that it can
reasonably expect the service to process. The following XML
code set the timeout value for Web Service process.

Fig. 5 . Configuration of over sized message filter

65 E. Uma, A. Kannan - Self-aware message 2016

The service uses a protocol other than HTTP (such
as TCP), the filter <maxMessageLength>setting is used to
limit the size (in kilobytes) of incoming requests as shown
in Figure 6. The following configuration example shows the

<MaxMessageLength>set to 1024 KB for a service that uses
the SoapClient/SoapService model.

Fig. 6 . Configuration of maximum message length

Message Replay Attack Filter
The implementation of message replay detection is an

identifier assigned from client side for the message. This identi-
fier provides assurance that the message has not been replayed
in transit. Next, the client sends the message to the recipient.
The filter verifies the client’s identifier and the message time
stamp. The Web Service verifies the message identifier to ensure
that the message contents have not been replayed in transit. If
the message identifier is valid, then the Web Service compares
the message time stamp to its own current clock value. If either
the identifier is invalid or the message was received beyond
the acceptable time span, the message is rejected. Lastly, the
service checks the replay cache for the Identifier Value field.

The Web Service checks the replay cache for the Identifier
Value that is used to uniquely identify the incoming message.
If the Identifier Value is already in the cache, the message is
rejected as a duplicate. If the message identifier is not in the
cache, the message identifier and time stamp are added to the
cache.

Service Policy
The following code example is an example of the config-

uration for the custom replay detection policy assertion on the
service shown in the Figure 7.

Fig. 7 . Configuration for the custom replay detection policy assertion on the service

The Replay Detection assertion has two important
parameters; they are cache life span and maximum message
periods configuration parameter.

Cache Life Span in Seconds
This parameter specifies how long in seconds identifiers

will remain in the replay cache. In Figure, this parameter is
configured for 1,200 seconds or 20 minutes.

Max Message Period in Seconds
This parameter specifies the maximum message age in

seconds that is tolerated by the assertion without accounting
for clock skew. In the preceding example, this parameter is
configured for 600 seconds or 10 minutes. The following code
configuration snippet provides an example of this setting in the
service’s Web config file. The value is set to 300 seconds as
shown in Figure 8.

2016 Int. J. Tec. Eng. Stud. 66

Fig. 8 . Code configuration for time tolerance

Messages are held in the cache for at least as long
as the value that is defined in the cache Life Span in Seconds
setting. To ensure that the server cannot accept a message after
a duplicate message has been removed from the cache, the
cache Life Span In Seconds setting must be set to at least the
Maximum Message Age + elapsed Time*2.

Replay Cache
The Cache Manager class interacts with a replay cache

database. Cache expiration is calculated to centralize all policy
on the Web Service. The replay cache database table is named
as Replay Database.

This method provides a solution to prevent the service
from processing replayed messages. It does this by rejecting
messages that the service has previously received within the
valid processing time for them.

Cache Cleaner
The filter must clear the cache at regular intervals to

regulate its size. A cache cleanup policy in the filter clears the

database cache. The task is scheduled to execute the Clear Old
Messages stored procedure at approximately the same interval
as the cache life span value configured in the replay detection
policy assertion. It executes every 22 minutes to keep the cache
reasonably clear.

Semantic URL Attack Filter
In this filter, the mitigation approach is implemented

by two significant components of semantic URL filter. Those
are random nonce generator and time stamp calculator. The
random nonce generator produces random values and from get-
ting values from identity of task. Afterwards, the nonce value
is concatenated with time stamp values to maintain its freshness.

RESULTS
The injection filter has been configured and embedded in

administrator’s login as shown in Figure 9. The administrators
can enable or disable the filter based on their requirement. This
feature will improve the speed of the server.

Fig. 9 . The filter settings in administrators page

67 E. Uma, A. Kannan - Self-aware message 2016

Performance Comparison
The proposed system is compared with various existing

systems namely input validator, AntiXSS filter, IE explorer,
Opera and Firefox. The comparative analysis has been carried

out with respect to number of attacks prevented and number of
failures as shown in the Figures 5.21 5.26.

Fig. 10 . Number of failures for parameter tampering attacks

Fig. 11 . Number of failures for coercive parsing attacks

Fig. 12 . Number of failures for over sized message attacks

2016 Int. J. Tec. Eng. Stud. 68

Fig. 13 . Number of failures for message replay attacks

Fig. 14 . Number of failures for semantic URL attacks

Fig. 15 . Overall comparative analysis: Number of failures

CONCLUSION AND RECOMMENDATIONS
The conventional firewall and filters are lacking in the

detection and prevention of the XML-based attacks due to the
fact that these attacks contain huge volume of data and are

cluttered in nature. Therefore, a new XML-based injection
filter is proposed in this research work to prevent and detect
the attacks. All incoming requests are passed through this filter
to access the service provider. It is implemented using input

69 E. Uma, A. Kannan - Self-aware message 2016

validation approach in XML documents. This filter prevents
significant classes of attacks by using parameter tampering
filter, coercive parsing filter, over sized message filter, message
replay filter and semantic URL filter. This model has been
tested against various XML-based attacks to check whether it

meets the requirement of the Web Service provider and proved
that the proposed approach detects attacks efficiently.

Declaration of Conflicting Interests
No conflicting interests are present.

REFERENCES

[1] S. Chawathe, “Comparing hierarchical data in external memory,” in Proceedings of the Twenty-Fifth International Conference
on Very Large Data Bases, pp. 90-101, 1999.

[2] A. Nierman and H. V. Jagadish, “Evaluating structural similarity in XML documents,” in Proceedings of the Fifth International
Workshop on the Web and Databases, vol. 2, pp. 61-67, 2002.

[3] I. Mlynkova, “Equivalence of XSD constructs and its exploitation in similarity evaluation,” in On the Move to Meaningful
Internet Systems: OTM 2008 (pp. 1253-1270). Springer Berlin Heidelberg, 2008.

[4] S. Shah, “Defending web services using mod security (apache): Methodology and filtering techniques,” Several Advisories
On Security Flaws, 2002.

[5] M. Cremonini, S. Vimercati, E. Damiani and P. Samarati, “An XML-Based approach to combine firewalls and web services
security specifications,” in Proceedings of ACM Workshop XML Security, Virginia, pp. 69-78, 2003.

[6] P. Lindstrom, “Attacking and defending web services, 2013,” A Spire Research Report, 2004.
[7] E. Bertino, L. Martino, F. Paci and A. Squicciarini, Security for Web Services and Service-Oriented Architectures, 1st ed.

Berlin: Germany, Springer Publisher.
[8] V. R. Mouli, and K. P. Jevitha, “Web services attacks and security-a systematic literature review,” Procedia Computer Science,

vol.93, pp.870-877, 2015.
[9] G. Y. Chan, C. S. Lee, and S. H. Heng, “Defending against XML-related attacks in e-commerce applications with predictive

fuzzy associative rules,” Applied Soft Computing, vol. 24, pp. 142-157, 2014.
[10] M. Yampolskiy, P. Horvath, X. D. Koutsoukos, Y. Xue, and J. Sztipanovits, “A language for describing attacks on cyber-

physical systems,” International Journal of Critical Infrastructure Protection, vol. 8, pp. 40-52, 2015.

— This article does not have any appendix. —

