KKG PUBLICATIONS
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • https://evolua.ispcaala.com/
  • http://pewarta.org/styles/
  • https://perhepi.org/
  • https://portal-indonesia.id/
  • https://nursahid.com/
  • https://singmanfaat.jabarprov.go.id/
  • https://sindika.co.id/
  • https://cirebonkerja.id/
  • https://klikoku.id/
  • https://iii.cemacyc.org/minicursos/
  • https://iv.cemacyc.org/creditos/
  • https://iv.cemacyc.org/
  • https://www.winteriorsdecor.com/
  • https://e-journal.polnes.ac.id/
  • https://dap.sumbarprov.go.id/
  • https://dinkes.sarolangunkab.go.id/
  • https://bappeda.sarolangunkab.go.id/
  • https://sipena.rsjrw.id/
  • https://slims.assunnah.ac.id/
  • https://ojs.as-pub.com/
  • https://techniumscience.com/
  • https://siakad.stikesbpi.ac.id/
  • https://bbwpublisher.com/
  • https://earsip.stikesbaptis.ac.id/
  • https://jdih.sukabumikab.go.id/v1/
  • https://rakornasaptikom2024.methodist.ac.id/
  • https://ojs.sttkingdom.ac.id/
  • https://eximiajournal.com/

Research on Single-Board Computers Clustering the Computing Performance



Volume 2, Issue 5
CHAO HSI HUANG, MIN HAO CHANG, I HSUAN LIN

Published online: 24 October 2016
Article Views: 50

Abstract

This research checks effectiveness of test of a single computer (CPU I5-4440 3.1 GHz and 8G memory). And tests the use of Raspberry Pi3 erected six groups of Hadoop clusters. This study puts forward setup clusters called Hadoop on the new SBC (Single-Board Computer) Raspberry Pi. This Hadoop cluster provides computing and storage services. Pattern recognition was run on the SBC clusters and the single computer; they are similar in price; their performance was observed. It is revealed the SBC clusters were better than single computers in performance that were increased by about 20% and increased number of SBC can improve cluster processing speed. In this research, experimental data were apparent, and Hadoop was used by Hadoop Distributed File System (HDFS) in the data storage; it has better security than a single computer. This research can be used as Hadoop infrastructure in the future.

Reference

  1. K. R. Lakhani and E. Von Hippel, “How open source software works:‘free’ user-to-user assistance,” Research Policy, vol. 32, no. 6, pp. 923-943, 2003. https://dx.doi.org/10.1016/S0048-7333(02)00095-1
  2. W. P. Birmingham and D. P. Siewiorek, “MICON: A knowledge based single board computer designer,” in Design Automation, 21st Conference on IEEE, 1984, pp. 565-571. https://dx.doi.org/10.1109/dac.1984.1585854
  3. R. Morabito. (2016). A performance evaluation of container technologies on internet of things devices [online.] Available: https://goo.gl/9KHvS0
  4. S. J. Cox, J. T. Cox, R. P., Boardman, S. J., Johnston, M., Scott and N. S. O’brien, “Iridis-pi: A low-cost, compact demonstration cluster,” Cluster Computing, vol. 17, no. 2, pp. 349-358, 2014. https://dx.doi.org/10.1007/s10586-013-0282-7
  5. F. P. Tso, D. R. White, S. Jouet, J. Singer and D. P. Pezaros, “The glasgow raspberry pi cloud: A scale model for cloud computing infrastructures,” in IEEE 33rd International Conference on Distributed Computing Systems Workshops, 2013, pp. 108-112. https://dx.doi.org/10.1109/icdcsw.2013.25
  6. P. Abrahamsson, S. Helmer, N. Phaphoom, L. Nicolodi, N. Preda, L. Miori, … and S. Bugoloni, “Affordable and energyefficient cloud computing clusters: The bolzano raspberry pi cloud cluster experiment,” in Cloud Computing Technology and Science (CloudCom), IEEE 5th International Conference on, 2013, vol. 2, pp. 170-175.
  7. A. Anwar, K. R. Krish and A. R. Butt, “On the use of microservers in supporting hadoop applications,” in IEEE International Conference on Cluster Computing (CLUSTER), 2014, pp. 66-74. https://dx.doi.org/10.1109/CLUSTER.2014.6968753
  8. W. Rosch, Hardware Bible, 5th ed. Indianapolis, IN: Que Publishing, 1999, pp. 50-51.
  9. A. K. Karun and K. Chitharanjan, “A review on hadoopHDFS infrastructure extensions,” in Information & Communication Technologies (ICT), IEEE Conference on, 2013, pp. 132-137.
  10. G. Yang, “The application of mapreduce in the cloud computing,” in Intelligence Information Processing and Trusted Computing (IPTC), 2nd International Symposium on, 2011, pp. 154-156. https://dx.doi.org/10.1109/iptc.2011.46
  11. M. B. Mollah, K. R. Islam and S. S. Islam, “Next generation of computing through cloud computing technology,” in Electrical & Computer Engineering (CCECE), 25th IEEE Canadian Conference on, 2012, pp. 1-6. https://dx.doi.org/10.1109/ccece.2012.6334973
  12. L. Kulik, “Mobile computing systems programming: A graduate distributed computing course,” IEEE Distributed Systems Online, vol. 8, no. 5, pp. 4-4, 2007. https://dx.doi.org/10.1109/MDSO.2007.27
  13. J. Nandimath, E. Banerjee, A. Patil, P. Kakade, S. Vaidya and D. Chaturvedi, “Big data analysis using Apache Hadoop,” in Information Reuse and Integration (IRI), IEEE 14th International Conference on, 2013, pp. 700-703. https://dx.doi.org/10.1109/iri.2013.6642536
  14. K. Shvachko, H. Kuang, S. Radia and R. Chansler, “The hadoop distributed file system,” in IEEE 26th symposium on mass storage systems and technologies (MSST), 2010, pp. 1-10. https://dx.doi.org/10.1109/MSST.2010.5496972
  15. A. Pal and S. Agrawal, “An experimental approach towards big data for analyzing memory utilization on a hadoop cluster using HDFS and mapreduce,” in Networks & Soft Computing (ICNSC), First International Conference on, 2014, pp. 442-447. https://dx.doi.org/10.1109/cnsc.2014.6906718
  16. S. G. Manikandan and S. Ravi, “Big data analysis using apache hadoop,” in IT Convergence and Security (ICITCS), International Conference on, 2014, pp. 1-4. https://dx.doi.org/10.1109/icitcs.2014.7021746
  17. K. Danielson. (2008). Distinguishing cloud computing from utility computing [online]. https://goo.gl/8b9U6l
  18. M. Snir, MPI–The Complete Reference: The MPI Core, vol. 1, Cambridge, MA: MIT Press, 1998.
  19. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. https://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
  20. H. Bay, A. Ess, T. Tuytelaars and L. Van Gool, “Speeded-up robust features (SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, 2008. https://dx.doi.org/10.1016/j.cviu.2007.09.014
  21. E. Uma, A. Kannan, “Self-aware message validating algorithm for preventing XML-based injection attacks,” International Journal of Technology and Engineering Studies, vol. 2, no. 3, pp. 60-69, 2016.

To Cite this article

C. H. Huang, M. H. Chang and I. H. Lin, “Research on single-board computers clustering the computing performance,” International Journal of Technology and Engineering Studies, vol. 2, no. 5, pp. 125-133, 2016.



© 2020. KKG Publications
Calle Alarcon 66, Sant Adrian De Besos 08930, Barcelona Spain | 00 34 610 911 348
About Us | Contact Us | Feedback

Search