KKG PUBLICATIONS
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • https://evolua.ispcaala.com/
  • https://portal-indonesia.id/
  • https://sipena.rsjrw.id/
  • https://www.ijecom.org/
  • https://askimahciwimandiri.co.id/
  • http://lapassumbawa.com/
  • https://ijecom.org
  • https://spartan.mizoram.gov.in/
  • https://ejournal.neurona.web.id/
  • https://e-journal.staibta.ac.id/
  • http://ilim.not.kg/
  • http://journals.ieu.kiev.ua/

Crispr/Cas: An Emerging Genome Editing Tool To Combat Viral Infections In Humans



Volume 8, Issue 1
Srirama P Bhat, Shobha G

Published online: 26 July 2022
Article Views: 25

Abstract

Viral infection is one of the major health concerns of humans and animals around the globe. Only a few selected treatments are available to treat viral infections/diseases. Even though vaccination is one of the preventive measures to combat viral infections, it is not available or possible for most of the viruses we know today. “Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an RNA mediated adaptive immune system of bacteria and archaea” that provides immunity against viruses, and humans can exploit this biological mechanism to combat viral infections in humans and animals. The “CRISPR technology,” a gene editing tool, unlike Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases, does not require the engineering of any kind of protein to work. As a result, CRISPR technology can be an effective tool to combat human viral infections. This review focuses on the outcome of various researchers’ attempts to edit genes in humans capable of providing resistance against many deadly human pathogenic viruses such as “Human Immunodeficiency Virus (HIV),” “Coronavirus disease,” and “Herpesvirus.” Although CRISPR/Cas technology is in the developmental stage, it looks like a promising emerging technology in the present scenario.

Reference

  1. V. Más and J. A. Melero, “Entry of enveloped viruses into host cells: Membrane fusion,” Structure and Physics of Viruses, vol. 63, pp. 467–487, 2013. doi: https://doi.org/10.1007/978-94-007-6552-8_16
  2. J. Cui, N. Techakriengkrai, T. Nedumpun, and S. Suradhat, “Abrogation of PRRSV infectivity by CRISPR-Cas13b-mediated viral RNA cleavage in mammalian cells,” Scientific Reports, vol. 10, no. 1, pp. 9617–9631, 2020. doi: https://doi.org/10.1038/s41598-020-66775-3
  3. H.-K. Liao, Y. Gu, A. Diaz, J. Marlett, Y. Takahashi, M. Li, K. Suzuki, R. Xu, T. Hishida, and C.-J. Chang, “Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells,” Nature communications, vol. 6, no. 1, pp. 1–21, 2015. doi: https://doi.org/10.1038/ncomms7413
  4. A. Mahas and M. Mahfouz, “Engineering virus resistance via CRISPR–Cas systems,” Current Opinion in Virology, vol. 32, pp. 1–8, 2018.
  5. M. Bakhrebah, M. Nassar, M. Alsuabeyl, W. Zaher, and S. Meo, “CRISPR technology: new paradigm to target the infectious disease pathogens,” European Review for Medical and Pharmacological Sciences, vol. 22, no. 11, pp. 3448–3452, 2018.
  6. A. Karimian, K. Azizian, H. Parsian, S. Rafieian, V. Shafiei-Irannejad, M. Kheyrollah, M. Yousefi, M. Majidinia, and B. Yousefi, “CRISPR/Cas9 technology as a potent molecular tool for gene therapy,” Journal of Cellular Physiology, vol. 234, no. 8, pp. 12 267–12 277, 2019. doi: https://doi.org/10.1002/jcp.27972
  7. A. Djekoun, “Therapeutic and diagnostic relevance of crispr technology,” Biomedicine & Pharmacotherapy, vol. 138, pp. 1–17, 2021. doi: https://doi.org/10.1016/j.biopha.2021.111487
  8. M. A. Garza-Elizondo, D. Rodríguez-Rodríguez, R. Ramírez-Solís, M. Garza-Rodríguez, and H. Barrera-Saldaña, “Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases,” International Journal of Molecular Medicine, vol. 43, pp. 1559–1574, 2019. doi: https://doi.org/10.1201/9781003088516-9
  9. M. P. Terns and R. M. Terns, “CRISPR-based adaptive immune systems,” Current Opinion in Microbiology, vol. 14, no. 3, pp. 321–327, 2011. doi: https://doi.org/10.1016/j.mib.2011.03.005
  10. C. Escalona-Noguero, M. López-Valls, and B. Sot, “CRISPR/Cas technology as a promising weapon to combat viral infections,” Bioessays, vol. 43, no. 4, pp. 1–15, 2021. doi: https://doi.org/10.1002/bies.202000315
  11. A. V. Wright, J. K. Nuñez, and J. A. Doudna, “Biology and applications of CRISPR systems: Harnessing natures toolbox for genome engineering,” Cell, vol. 164, no. 1-2, pp. 29–44, 2016. doi: https://doi.org/10.1016/j.cell.2015.12.035
  12. U. A. Ashfaq and H. Khalid, “CRISPR/CAS9-mediated antiviral activity: A tool to combat viral infection,” Critical Reviews in Eukaryotic Gene Expression, vol. 30, no. 1, pp. 45–56, 2020. doi: https://doi.org/10.1615/critreveukaryotgeneexpr.2020028207
  13. V. Singh, N. Gohil, R. Ramirez Garcia, D. Braddick, and C. K. Fofié, “Recent advances in CRISPRCas9 genome editing technology for biological and biomedical investigations,” Journal of Cellular Biochemistry, vol. 119, no. 1, pp. 81–94, 2018. doi:https://doi.org/10.1002/jcb.26165
  14. R. M. Terns and M. P. Terns, “CRISPR-based technologies: Prokaryotic defense weapons repurposed,” Trends in Genetics, vol. 30, no. 3, pp. 111–118, 2014. doi: https://doi.org/10.1016/j.tig.2014.01.003
  15. P. C. Fineran and E. Charpentier, “Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information,” Virology, vol. 434, no. 2, pp. 202–209, 2012. doi: https://doi.org/10.1016/j.virol.2012.10.003
  16. L. Cai, A. L. Fisher, H. Huang, and Z. Xie, “CRISPR-mediated genome editing and human diseases,” Genes and Diseases, vol. 3, no. 1, pp. 244–251, 2016. doi: https://doi.org/10.1016/j.gendis.2016.07.003
  17. P. Liang, X. Zhang, Y. Chen, and J. Huang, “Developmental history and application of CRISPR in human disease,” The Journal of Gene Medicine, vol. 19, no. 6, pp. 2963–2988, 2017. doi: https://doi.org/10.1002/jgm.2963
  18. J. Huang, Y. Wang, and J. Zhao, “CRISPR editing in biological and biomedical investigation,” Journal of Cellular Physiology, vol. 233, no. 5, pp. 3875–3891, 2018. doi: https://doi.org/10.1002/jcp.26141
  19. H. Mollanoori and S. Teimourian, “Therapeutic applications of CRISPR/Cas9 system in gene therapy,” Biotechnology Letters, vol. 40, pp. 907 914, 2018. doi: https://doi.org/10.1007/s10529-018-2555-y
  20. J. L. Gori, P. D. Hsu, M. L. Maeder, S. Shen, G. G. Welstead, and D. Bumcrot, “Delivery and specificity of crispr/cas9 genome editing technologies for human gene therapy,” Human Gene Therapy, vol. 26, no. 7, pp. 443–451, 2015. doi: https://doi.org/10.1089/hum.2015.074
  21. Z. Glass, M. Lee, Y. Li, and Q. Xu, “Engineering the delivery system for CRISPR-based genome editing,” Trends in Biotechnology, vol. 36, no. 2, pp. 173–185, 2018. doi: https://doi.org/10.1016/j.tibtech.2017.11.006
  22. K. G. Barnes, A. E. Lachenauer, A. Nitido, S. Siddiqui, R. Gross, B. Beitzel, and P. C. Sabeti, “Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in realtime,” Nature Communications, vol. 11, no. 1, pp. 4131–4145, 2020. doi: https://doi.org/10.1101/2020.05.26.116442
  23. C. A. Freije and P. Sabeti, “Detect and destroy: CRISPR-based technologies for the response against viruses,” Cell Host and Microbe, vol. 29,
    no. 5, pp. 689–703, 2021. doi: https://doi.org/10.1016/j.chom.2021.04.003
  24. B. Shademan, A. Nourazarian, S. Hajazimian, A. Isazadeh, C. Biray Avci, and M. A. Oskouee, “CRISPR technology in gene-editing-based detection and treatment of SARS-CoV-2,” Frontiers in Molecular Biosciences, vol. 8, pp. 1365–1382, 2022. doi: https://doi.org/10.3389/fmolb.2021.772788
  25. M. Lotfi and N. Rezaei, “Crispr/cas13: A potential therapeutic option of covid-19,” Biomed Pharmacother, vol. 27, pp. 1–15, 2022. doi: https://doi.org/10.1186/s40001-021-00626-3
  26. S. S. Wu, Q. C. Li, C. Q. Yin, W. Xue, and C. Q. Song, “Advances in CRISPR/Cas-based gene therapy in human genetic diseases,” Theranostics, vol. 10, no. 10, pp. 437–456, 2020. doi: https://doi.org/10.7150/thno.43360
  27. Y. Xu and Z. Li, “CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy,” Computational and Structural Biotechnology Journal, vol. 18, pp. 2401–2415, 2020. doi: https://doi.org/10.1016/j.csbj.2020.08.031
  28. F. Uddin, C. M. Rudin, and T. Sen, “Crispr gene therapy: applications, limitations, and implications for the future,” Frontiers in Oncology, vol. 10, pp.1387–1406, 2020. doi: https://doi.org/10.3389/fonc.2020.01387
  29. Z. Huang, A. Tomitaka, A. Raymond, and M. Nair, “Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS,” Gene Therapy, vol. 24, no. 7, pp. 377–384, 2017. doi: https://doi.org/10.1038/gt.2017.35
  30. H. De Buhr and R. J. Lebbink, “Harnessing CRISPR to combat human viral infections,” Current Opinion in Immunology, vol. 54, pp. 123–129, 2018. doi:https://doi.org/10.1016/j.coi.2018.06.002
  31. H. Ebina, N. Misawa, Y. Kanemura, and Y. Koyanagi, “Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus,” Scientific Reports, vol. 3, no. 1, pp. 1–7, 2013. doi: https://doi.org/10.1038/srep02510
  32. Q. Xiao, D. Guo, and S. Chen, “Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy,” Frontiers in Cellular and Infection Microbiology, vol. 9, pp. 69–84, 2019. doi: https://doi.org/10.3389/fcimb.2019.00069
  33. a. K. R. Hu, W., F. Yang, Y. Zhang, L. F. Cosentino, L., and K. Khalili, “RNA-directed gene editing specifically eradicates latent and prevents
    new HIV-1 infection,” Proceedings of the National Academy of Sciences, vol. 111, no. 31, pp.11 461–11 466, 2014. doi: https://doi.org/10.1073/pnas.1405186111
  34. C. Li, X. Guan, T. Du, W. Jin, B. Wu, Y. Liu, and Q. Hu, “Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9,” Journal of General Virology, vol. 96, no. 8, pp. 2381–2393, 2015. doi: https://doi.org/10.1099/vir.0.000139
  35. P. Hou, S. Chen, S. Wang, X. Yu, Y. Chen, M. Jiang, and D. Guo, “Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection,” Scientific Reports, vol. 5, no. 1, pp. 1–15, 2015.
  36. G. Darcis, C. S. Binda, B. Klaver, E. HerreraCarrillo, B. Berkhout, and A. T. Das, “The impact of HIV-1 genetic diversity on CRISPR-Cas9 antiviral activity and viral escape,” Viruses, vol. 11, no. 3, pp. 255–271, 2019. doi: https://doi.org/10.3390/v11030255
  37. L. Yin, S. Hu, S. Mei, H. Sun, F. Xu, J. Li, and F. Guo, “CRISPR/Cas9 inhibits multiple steps of HIV-1 infection,” Human Gene Therapy, vol. 29,
    no. 11, pp. 1264–1276, 2018. doi: https://doi.org/10.1089/hum.2018.018
  38. a. W. M. A. Liang, C., A. T. Das, and B. Berkhout, “CRISPR/Cas9: A double-edged sword when used to combat HIV infection,” Retrovirology, vol. 13, no. 1, pp. 1–4, 2016. doi: https://doi.org/10.1186/s12977-016-0270-0
  39. D. A. Nalawansha and K. T. Samarasinghe, “Double-barreled CRISPR technology as a novel treatment strategy for COVID-19,” ACS Pharmacology & Translational Science, vol. 3, no. 5, pp. 790–800, 2020. doi: https://doi.org/10.1021/acsptsci.0c00071
  40. T. R. Abbott, G. Dhamdhere, Y. Liu, X. Lin, L. Goudy, L. Zeng, and L. S. Qi, “Development of CRISPR as an antiviral strategy to combat SARSCoV-2 and influenza,” Cell, vol. 181, no. 4, pp.865–876, 2020. doi: https://doi.org/10.1016/j.cell.2020.04.020
  41. T. M. Nguyen, Y. Zhang, and P. P. Pandolfi, “Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses,” Cell Research, vol. 30, no. 3, pp. 189–190, 2020. doi: https://doi.org/10.1038/s41422-020-0290-0
  42. van Diemen, F. R., and R. J. Lebbink, “CRISPR/Cas9, a powerful tool to target human herpesviruses,” Cellular Microbiology, vol. 19, no. 2, pp. 1269–1285, 2019. doi:https://doi.org/10.1111/cmi.12694
  43. F. R. van Diemen, E. M. Kruse, M. J. Hooykaas, C. E. Bruggeling, A. C. Schurch, and a. L. R. J. van Ham, P. M., “CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections,” PLoS Pathogens, vol. 12, no. 6, pp. 1–25, 2016. doi: https://doi.org/10.1371/journal.ppat.1005701
  44. P. C. Roehm, M. Shekarabi, H. S. Wollebo, A. Bellizzi, a. S. J. He, L., and K. Khalili, “Inhibition of HSV-1 replication by gene editing strategy,” Scientific Reports, vol. 6, no. 1, pp. 1–11, 2016. doi: https://doi.org/10.1038/srep23146
  45. Y. Bi, L. Sun, D. Gao, C. Ding, Z. Li, Y. Li, and Q. Li, “High-efficiency targeted editing of large viral genomes by RNA-guided nucleases,” PLoS Pathogens, vol. 10, no. 5, pp. 1–19, 2014. doi: https://doi.org/10.1371/journal.ppat.1004090

To Cite this article



© 2020. KKG Publications
Calle Alarcon 66, Sant Adrian De Besos 08930, Barcelona Spain | 00 34 610 911 348
About Us | Contact Us | Feedback

Search