Predicting User Motivation Towards Retention of e-Services: An NLP-based Approach
Volume 5, Issue 1 Arghya Ray, Pradip Kumar Bala
Published online: 19 February 2019 Article Views: 20
Abstract
In this modern era, the dynamic business world has led to the emergence of ’market orientation’, and social CRM (Diffley, McCole, & Carvajal-Trujillo, 2018; Kohli & Jaworski, 1990; Narver & Slater, 1990). The benefits of e-Services are often not fully utilized because of users’ unwillingness to use it (Devaraj & Kohli, 2003; Venkatesh & Davis, 2000). Hence, understanding the user’s motivation in an e-service through Twitter data can help companies better retain users. Though people adopt services quickly, they tend to discontinue the service after limited use. Productivity benefits and maximum Customer Lifetime Value (CLV) are typically obtained in the continued use phase (Kim & Malhotra, 2005; Venkatesh, Morris, Davis, & Davis, 2003). With the emergence of social media, extracting and processing information (Crooks, Croitoru, Stefanidis, & Radzikowski, 2013; Kosala & Blockeel, 2000; Russell, 2011; Sakaki, Okazaki, & Matsuo, 2010), can help in understanding the motivation of users (DeVaro, Kim, Wagman, & Wolff, 2018) towards using an eService. This has motivated us to analyze Twitter data to understand customer motivation levels in eService retention. In this study, 1000 tweets were downloaded from ten different e-Service providers based on the company’s official Twitter handle and analyzed. The results show that using Naïve Bayes on function and content words help in predicting retention intention. Predicting the IS continuance intention of users through tweets analysis can help companies perform better sentiment analysis and provide customized benefits to users. This study can help organizations influence less motivated customers to retain their services through proper marketing strategies.
References
Agrifoglio, R., Black, S., Metallo, C., & Ferrara, M. (2012). Extrinsic versus intrinsic motivation in continued twitter usage. Journal of Computer Information Systems, 53(1), 33-41.
Ayuningrat, M. P., Noermijati, & Hadiwidjojo, D. (2016). Green product innovations effect on firm performance of managerial environmental concern and green communication. Journal of Administrative and Business Studies, 2(2), 56-63. doi:https://doi.org/10.20474/jabs-2.2.1
Belanche, D., Casaló, L. V., Flavián, C., & Schepers, J. (2014). Trust transfer in the continued usage of public e-services. Information & Management, 51(6), 627-640. doi:https://doi.org/10.1016/j.im.2014.05.016
Carver, C. S., & Scheier, M. F. (2001). On the self-regulation of behavior. Cambridge , UK: Cambridge University Press.
Church, K. W. (1989). A stochastic parts program and noun phrase parser for unrestricted text. In International Conference on Acoustics, Speech, and Signal Processing, California, CA.
Crooks, A., Croitoru, A., Stefanidis, A., & Radzikowski, J. (2013). Earthquake: Twitter as a distributed sensor system. Transactions in GIS, 17(1), 124-147. doi:https://doi.org/10.1111/j.1467-9671.2012.01359.x
Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of Research in Personality, 19(2), 109-134. doi:https://doi.org/10.1016/0092-6566(85)90023-6
Devaraj, S., & Kohli, R. (2003). Performance impacts of information technology: Is actual usage the missing link?Management Science, 49(3), 273-289. doi:https://doi.org/10.1287/mnsc.49.3.273.12736
DeVaro, J., Kim, J. H., Wagman, L., & Wolff, R. (2018). Motivation and performance of user contributors: Evidence from a CQA forum. Information Economics and Policy, 42, 56-65. doi:https://doi.org/10.1016/j.infoecopol.2017.08.001
Diffley, S., McCole, P., & Carvajal-Trujillo, E. (2018). Examining social customer relationship management among Irish hotels. International Journal of Contemporary Hospitality Management, 30(2), 1072-1091. doi:https://doi.org/10.1108/ijchm-08-2016-0415
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. doi:https://doi.org/10.1016/s1071-5819(03)00111-3
Festinger, L. (1957). A theory of cognitive dissonance. Stanford, CA: Stanford University Press.
Fishbach, A., & Choi, J. (2012). When thinking about goals undermines goal pursuit. Organizational Behavior and Human Decision Processes, 118(2), 99-107. doi:https://doi.org/10.1016/j.obhdp.2012.02.003
Fishbein, M., & Ajzen, I. (1974). Attitudes towards objects as predictors of single and multiple behavioral criteria. Psychological Review, 81(1), 59-60. doi:https://doi.org/10.1037/h0035872
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(3), 1157-1182.
Higgins, E. T., Freitas, A. L., Spiegel, S., & Molden, D. C. (2003). Transfer of value from fit. Journal of Personality and Social Psychology, 84(6), 1140-1153. doi:https://doi.org/10.1037/0022-3514.84.6.1140
Hu, T., Kettinger, W. J., & Poston, R. S. (2015). The effect of online social value on satisfaction and continued use of social media. European Journal of Information Systems, 24(4), 391-410. doi:https://doi.org/10.1057/ejis.2014.22
Hull, C. L. (1932). The goal-gradient hypothesis and maze learning. Psychological Review, 39(1), 25-43. doi:https://doi.org/10.1037/h0072640
Ilias, A., Razak, M. Z. A., & Rahman, R. A. (2015). The quality of non-financial information on internet business reporting for Malaysian Public Listed Companies (PLCS). International Journal of Business and Administrative Studies, 1(4), 165-175. doi:https://doi.org/10.20469/ijbas.10005-4
Ilieva, R., & Gashurova, D. (2015). Methodical aspects for measuring customers satisfaction of eservices in automated CRM systems. KSI Transactions on Knowledge Society, 8(2), 50-54. doi:https://doi.org/10.1109/siela.2016.7543013
Kim, S. S., & Malhotra, N. K. (2005). A longitudinal model of continued is use: An integrative view of four mechanisms underlying postadoption phenomena. Management Science, 51(5), 741-755. doi:https://doi.org/10.1287/mnsc.1040.0326
Klammer, S. M., T., & Volpe, A. (2000). Analyzing English grammar. New Dehli, India: Pearson Education India.
Kohli, A. K., & Jaworski, B. J. (1990). Market orientation: The construct, research propositions, and managerial implications. Journal of Marketing, 54(2), 1-18. doi:https://doi.org/10.2307/1251866
Koppel, M., Argamon, S., & Shimoni, A. R. (2002). Automatically categorizing written texts by author gender. Literary and Linguistic Computing, 17(4), 401-412. doi:https://doi.org/10.1093/llc/17.4.401
Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations Newsletter, 2(1), 1-15. doi:https://doi.org/10.1145/360402.360406
Lewin, K. (2013). A dynamic theory of personality-selected papers. Reading UK: Read Books Ltd.
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York, NY: Henry Holt and Co.
Mischel, W., Shoda, Y., & Rodriguez, M. I. (1989). Delay of gratification in children. Science, 244(4907), 933-938. doi:https://doi.org/10.1126/science.2658056
Mohamad Yusof, H. S., Munap, R., Mohd Badrillah, R. I., Ab Hamid, N. R., & Md Khir, R. (2017). The relationship between organizational culture and employee motivation as moderated by work attitude. Journal of Administrative and Business Studies, 3(1), 21-25. doi:https://doi.org/10.20474/jabs-3.1.3
Mukherjee, A., & Liu, B. (2010). Improving gender classification of blog authors. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, New York, NY.
Mukherjee, S., & Bala, P. K. (2017). Sarcasm detection in microblogs using naïve bayes and fuzzy clustering. Technology in Society, 48, 19-27. doi:https://doi.org/10.1016/j.techsoc.2016.10.003
Naidoo, R., & Leonard, A. (2007). Perceived usefulness, service quality and loyalty incentives: Effects on electronic service continuance. South African Journal of Business Management, 38(3), 39-48.
Narver, J. C., & Slater, S. F. (1990). The effect of a market orientation on business profitability. Journal of Marketing, 54(4), 20-35. doi:https://doi.org/10.2307/1251757
Pandla, K. (2016). Drivers and characteristics of high performing organizations. International Journal of Business and Administrative Studies, 2(3), 57-61. doi:https://doi.org/10.20469/ijbas.2.10001-3
Papanastasiou, G., Drigas, A., Skianis, C., Lytras, M., & Papanastasiou, E. (2018). Patient centric ICTs based healthcare for students with learning, physical and/or sensory disabilities. Telematics and Informatics, 35(4), 654-664. doi:https://doi.org/10.1016/j.tele.2017.09.002
Pennacchiotti, M., & Popescu, A.-M. (2011). A machine learning approach to twitter user classification. In Fifth International AAAI Conference on Weblogs and Social Media, Boston, MA.
Powers, W. T., & Powers, W. T. (1973). Behavior: The control of perception. Chicago, NY: Aldine Chicago.
Rao, D., Yarowsky, D., Shreevats, A., & Gupta, M. (2010). Classifying latent user attributes in twitter. In Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents, California, CA.
Ray, A., & Bala, P. K. (2019). Use of NLP and SEM in determining factors for e-service adoption. Pennsylvania, PA: IGI Global.
Russell, M. A. (2011). Matthew russell on mining the social web. North Sebastopol, CA: O’Reilly Media.
Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake shakes twitter users: Real-time event detection by social sensors. In Proceedings of the 19th International Conference on World Wide Web, Seoul, South Korea.
Salo, M., & Makkonen, M. (2018). Why do users switch mobile applications? trialing behavior as a predecessor of switching behavior. Communications of the Association for Information Systems, 42, 386-407. doi:https://doi.org/10.17705/1cais.04214
Sansone, C., & Harackiewicz, J. (1996). I dont feel like it: The function of interest in self regulation. In L. L. Martin & A. Tesser (Eds.), The psychology of action: Linking cognition and motivation to behavior. New York, NY: Guilford Press.
Schurer, S. C., & Muskal, S. M. (2013). Kinome-wide activity modeling from diverse public high-quality data sets. Journal of Chemical Information and Modeling, 53(1), 27-38. doi:https://doi.org/10.1021/ci300403k
Shah, J., & Kruglanski, A. (2000). The structure and substance of intrinsic motivation. In C. Sansone and J. M. Harackiewicz (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance. San Francisco, CA: Academic Press.
Thanasripanitchai, S. (2017). Daily activities management information system of Koglam Sangaram Village: The self-sufficiency economy village model of Pid-Thong-Lang-Pha project. International Journal of Business and Economic Affairs, 2(1), 59-66. doi:https://doi.org/10.24088/ijbea-2017-21008
Touré-Tillery, M., & Fishbach, A. (2012). The end justifies the means, but only in the middle. Journal of Experimental Psychology: General, 141(3), 570-583. doi:https://doi.org/10.1037/a0025928
Touré-Tillery, M., & Fishbach, A. (2014). How to measure motivation: A guide for the experimental social psychologist. Social and Personality Psychology Compass, 8(7), 328-341. doi:https://doi.org/10.1111/spc3.12110
Van Riel, A. C., Liljander, V., & Jurriens, P. (2001). Exploring consumer evaluations of e services: A portal site. International Journal of Service Industry Management, 12(4), 359-377. doi:https://doi.org/10.1108/09564230110405280
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. doi:https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., & Goyal, S. (2010). Expectation disconfirmation and technology adoption: polynomial modeling and response surface analysis. MIS Quarterly, 281-303. doi:https://doi.org/10.2307/20721428
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 425-478. doi:https://doi.org/10.2307/30036540
Winkler, E. (2012). A basic course in linguistics. London, UK: Bloomsbury Publishing.
Yaemjamuang, B. (2017). Investigating motivation of the hotel employees at the operational level: A case study of the hotel business in Samut Songkram Province, Thailand. International Journal of Business and Economic Affairs, 2(1), 8-11. doi:https://doi.org/10.24088/ijbea-2017-21002
Yao, X., Phang, C. W., & Ling, H. (2015). Understanding the influences of trend and fatigue in individuals’ SNS switching intention. In 48th Hawaii International Conference on System Sciences, Beijing, China.
Yoon, C., & Rolland, E. (2015). Understanding continuance use in social networking services. Journal of Computer Information Systems, 55(2), 1-8. doi:https://doi.org/10.1080/08874417.2015.11645751
Zeigarnik, B. (1927). On the retention of completed and uncompleted activities. Psychologische Forschung, 9, 1-85. doi:https://doi.org/10.1007/bf02409755
To Cite this article
Ray, A. & Bala, P. K. (2019). Predicting user motivation towards retention of e-services: An NLP- based approach. International Journal of Business and Administrative Studies, 5(1), 01-08. doi: https://dx.doi.org/10.20469/ijbas.5.10001-1