KKG PUBLICATIONS
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • Home
  • Journals
    • BUSINESS & ADMINISTRATIVE STUDIES
    • HUMANITIES, ARTS & SOCIAL SCIENCES
    • TECHNOLOGY & ENGINEERING STUDIES
    • APPLIED SCIENCES
    • MEDICAL SCIENCES
  • Publishing Ethics
  • Privacy Policy
  • Crossmark Policy
  • Contact Us
  • https://evolua.ispcaala.com/
  • http://pewarta.org/styles/
  • https://perhepi.org/
  • https://portal-indonesia.id/
  • https://nursahid.com/
  • https://singmanfaat.jabarprov.go.id/
  • https://sindika.co.id/
  • https://cirebonkerja.id/
  • https://klikoku.id/
  • https://iii.cemacyc.org/minicursos/
  • https://iv.cemacyc.org/creditos/
  • https://iv.cemacyc.org/
  • https://www.winteriorsdecor.com/
  • https://e-journal.polnes.ac.id/
  • https://dap.sumbarprov.go.id/
  • https://dinkes.sarolangunkab.go.id/
  • https://bappeda.sarolangunkab.go.id/
  • https://sipena.rsjrw.id/
  • https://slims.assunnah.ac.id/
  • https://ojs.as-pub.com/
  • https://techniumscience.com/

Efficient Precipitation Methods of Inulinase from Endophytic Bacteria Bacillus aquimaris Isolated from Jerusalem Artichoke



   Volume 4, Issue 3
Kanokwan Chansoda, Sophon Boonlue, Wiyada Mongkolthanaruk

Published online:  14 November 2018

Article Views: 38

Abstract

Inulinase is an enzyme that hydrolyzes inulin to oligosaccharides used in the food industry. Inulin is a source of fructose production using inulinase hydrolysis in one step. Jerusalem artichoke (Helianthus tuberosus L.) is a high inulin plant that was accumulating inulin in tubers. Thus, the endophytic bacterium, Bacillus aquimaris was isolated from Jerusalem artichoke to determined inulinase activity. This bacterium produced high inulinase when grown in Luria Bertani medium containing 1% inulin as the carbon and energy source with incubation temperature at 37◦C for 20 hours and shaking speed of 150 rpm. The crude enzyme showed specific inulinase activities at 1.61 U/mg protein after incubation at 55◦C for 20 min in the presence of the inulin substrate. The suitable method of enzyme concentration was studied in this work for purification and characterization in further. There were four methods for protein precipitation using ammonium sulfate, ethanol, butanol, and 2-steps of salt and alcohol. The best-precipitated protein method was 50% of ethanol, giving 53% protein recovery with specific activity at 26.21 U/mg. This method was efficient with inulinase not only protein concentration but also protein purification (16.24 fold).

Reference

  1. E. J. Vandamme and D. G. Derycke, “Microbial inulinases: Fermentation process, properties, and applications,” Advances in Applied Microbiology, vol. 29, pp. 139–176, 1983. doi: https://doi.org/10.1016/s0065-2164(08)70356-3
  2. N. Kaur and A. K. Gupta, “Applications of inulin and oligofructose in health and nutrition,” Journal of Biosciences, vol. 27, no. 7, pp. 703–714, 2002. doi: https://doi.org/10.1007/bf02708379
  3. W. Liebl, D. Brem, and A. Gotschlich, “Analysis of the gene for β-fructosidase (invertase, inulinase) of the hyperthermophilic bacterium Thermotoga maritima, and characterisation of the enzyme expressed in Escherichia coli,” Applied Microbiology and Biotechnology, vol. 50, no. 1, pp. 55–64, 1998. doi: https://doi.org/10.1007/s002530051256
  4.  R. S. Singh, R. Dhaliwal, and M. Puri, “Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for preparation of high-fructose syrup,” Journal of Microbiology and Biotechnology, vol. 17, no. 5, pp. 733–738, 2007.
  5.  P. Bunruk, D. Kantachote, and A. Sukhoom, “Isolation and selection of purple non-sulfur bacteria for phosphate removal in rearing water from shrimp cultivation,” Journal of Applied and Physical Sciences, vol. 3, no. 2, pp. 73–80, 2017. doi: https://doi.org/10.20474/japs-3.2.5
  6.  S. Sirisansaneeyakul, S. Jitbanjongkit, N. Prasomsart, P. Luangpituksa et al., “Production
    of β-fructofuranosidase from Aspergillus niger ATCC20611,” Kasetsart Journal Natural Science,
    vol. 34, pp. 378–386, 2000.
  7. A. Fuchs, “Production and utilization of inulin. Part II: Utilization of inulin,” in Science and Tecnology of Fructans, M. Suzuki and N. J. Chatterton, Eds. Boca Raton, FL: CRC Press, 1993, pp. 319–352.
  8.  D. Dorrell and B. Chubey, “Irrigation, fertilizer, harvest dates and storage effects on the reducing sugar and fructose concentrations of Jerusalem artichoke tubers,” Canadian Journal of Plant Science, vol. 57, no. 2, pp. 591–596, 1977. doi: https://doi.org/10.4141/cjps77-084
  9.  B. Chubey and D. Dorrell, “Jerusalem artichoke, a potential fructose crop for the prairies,” Canadian Institute of Food Science and Technology Journal, vol. 7, no. 2, pp. 98–100, 1974. doi: https://doi.org/10.1016/s0315-5463(74)73870-6
  10. Z. Chi, Z. Chi, T. Zhang, G. Liu, and L. Yue, “Inulinase-expressing microorganisms and applications of inulinases,” Applied Microbiology and Biotechnology, vol. 82, no. 2, pp. 211–220, 2009. doi: https://doi.org/10.1007/s00253-008-1827-1
  11.  R. Nagem, A. Rojas, A. Golubev, O. Korneeva, E. Eneyskaya, A. Kulminskaya, K. Neustroev, and I. Polikarpov, “Crystal structure of exo-inulinase from Aspergillus awamori: The enzyme fold and structural determinants of substrate recognition,” Journal of Molecular Biology, vol. 344, no. 2, pp.471–480, 2004. doi: https://doi.org/10.1016/j.jmb.2004.09.024
  12. Y. Tsujimoto, A. Watanabe, K. Nakano, K. Watanabe, H. Matsui, K. Tsuji, T. Tsukihara, and
    Y. Suzuki, “Gene cloning, expression, and crystallization of a thermostable exo-inulinase from Geobacillus stearothermophilus KP1289,” Applied microbiology and biotechnology, vol. 62, no. 2-3, pp. 180–185, 2003. doi: https://doi.org/10.1007/s00253-003-1261-3
  13.  H. Yoshikawa, A. Hirano, T. Arakawa, and K. Shiraki, “Mechanistic insights into protein precipitation by alcohol,” International Journal of Biological Macromolecules, vol. 50, no. 3, pp. 865–871,2012.
  14. C. Dennison and R. Lovrien, “Three phase partitioning: Concentration and purification of proteins,” Protein Expression and Purification, vol. 11, no. 2, pp. 149–161, 1997. doi: https://doi.org/10.1006/prep.1997.0779
  15.  H. T. T. Hanh and W. Mongkolthanaruk, “Correlation of growth and IAA production of Lysinibacillus Fusiformis UD 270,” Journal of Applied and Physical Sciences, vol. 3, no. 3, pp. 98–106, 2017. doi: https://doi.org/10.20474/japs-3.3.3
  16.  M. Zhao, W. Mu, B. Jiang, L. Zhou, T. Zhang, Z. Lu, Z. Jin, and R. Yang, “Purification and characterization of inulin fructotransferase (DFA IIIforming) from Arthrobacter aurescens SK 8.001,” Bioresource Technology, vol. 102, no. 2, pp. 1757–1764, 2011. doi: https://doi.org/10.1016/j.biortech.2010.08.093
  17. S. Meenakshi, S. Umayaparvathi, P. Manivasagan, M. Arumugam, and T. Balasubramanian, “Purification and characterization of inulinase from marine bacterium, Bacillus cereus MU-31,” Indian Journal of Geo-Marine Sciences, vol. 42, no. 4, pp. 510–515, 2013.
  18. H. M. Hussein, N. H. Zaki, and N. Sahira, “Purification and characterization of exoinulinase from Pseudomonas putida isolated from agricultural waste materials,” Diyala Journal for Pure Science, vol. 10, no. 3-part 1, pp. 71–89, 2014.
  19. K. Naidoo, A. Kumar, V. Sharma, K. Permaul, and S. Singh, “Purification and characterization of an endoinulinase from Xanthomonas campestris pv. phaseoli KM 24 mutant,” Food Technology and Biotechnology, vol. 53, no. 2, p. 146, 2015.
  20.  V. Vinoth Kumar, M. P. Premkumar, V. k. Sathyaselvabala, S. Dineshkirupha, J. Nandagopal, and S. Sivanesan, “Aspergillus niger exo-inulinase purification by three phase partitioning,” Engineering in Life Sciences, vol. 11, no. 6, pp. 607–614, 2011. doi: https://doi.org/10.1002/elsc.201000180
  21.  G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical
    Chemistry, vol. 31, no. 3, pp. 426–428, 1959. doi: https://doi.org/10.1021/ac60147a030
  22.  O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” Journal of Biological Chemistry, vol.193, no. 1, pp. 265–275, 1951.
  23. S. A. I. Bokhari, F. Latif, and M. I. Rajoka, “Purification and characterization of xylanases from
    Thermomyces lanuginosus and its mutant derivative possessing novel kinetic and thermodynamic properties,” World Journal of Microbiology and Biotechnology, vol. 25, no. 3, pp. 493–502, 2009. doi: https://doi.org/10.1007/s11274-008-9915-z
  24.  A. Jabbar, M. H. Rashid, M. R. Javed, R. Perveen, and M. A. Malana, “Kinetics and thermodynamics of a novel endoglucanase (CMCase) from Gymnoascella citrina produced under solid-state condition,” Journal of Industrial Microbiology & Biotechnology, vol. 35, no. 6, pp. 515–524, 2008. doi: https://doi.org/10.1007/s10295-008-0310-4
  25. S. Hernalsteens and F. Maugeri, “Purification and characterisation of a fructosyltransferase
    from Rhodotorula sp.” Applied Microbiology and Biotechnology, vol. 79, no. 4, p. 589, 2008. doi: https://doi.org/10.1007/s00253-008-1470-x
  26. S. Golunski, V. Astolfi, N. Carniel, D. de Oliveira, M. Di Luccio, M. A. Mazutti, and H. Treichel, “Ethanol precipitation and ultrafiltration of inulinases from Kluyveromyces marxianus,” Separation and Purification Technology, vol. 78, no. 3, pp. 261–265, 2011. doi: https://doi.org/10.1016/j.seppur.2011.02.019

To Cite this article



© 2020. KKG Publications
Calle Alarcon 66, Sant Adrian De Besos 08930, Barcelona Spain | 00 34 610 911 348
About Us | Contact Us | Feedback

Search