Relaxtion Behavior of Elastomer Composites: The Effect of a Hybrid Carbon Black/Carbon Nanotubes Filler
Volume 4, Issue 3 Mansurova I. A., Burkov A. A., Shilov I. B., Dolgiy E. O., Shirokova Ye. S., Khousainov A. B., Belozerov V. S.
Published online:14 November 2018
Article Views: 40
Abstract
The article analyzes relaxation α-transition in elastomeric composites containing a hybrid carbon black/carbon nanotubes (CB/CNT) filler. According to the Dynamic Mechanical Testing (DMA) data, the inclusion of hybrid particles CB/CNT in the filler leads to the expansion of the temperature dependences of the loss tangent (TanD) for all samples towards lower temperatures and the displacement of the position of the TanD maximum by a value from 4.0 up to 16 degrees in comparison with control vulcanizate. The DSC data indicate the presence of additional low-temperature α-relaxation transitions in modified vulcanizates (-123 … -118◦C). The observed relaxation behavior of macromolecules is due to the appearance in the material of regions with less dense packing of macromolecules and, as a consequence, the expansion of their conformational set for segmental motion under low-temperature conditions. It guarantees to get material with increased fatigue resistance and frost resistance.
Reference
U. Szeluga, B. Kumanek, and B. Trzebicka, “Synergy in hybrid polymer/nanocarbon composites. a review,” Composites Part A: Applied Science and Manufacturing, vol. 73, pp. 204–231, 2015. doi:https://doi.org/10.1016/j.compositesa.2015.02.021
L. Bokobza, M. Rahmani, C. Belin, J.-L. Bruneel, and N.-E. El Bounia, “Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers,” Journal of Polymer Science Part B: Polymer Physics, vol. 46, no. 18, pp. 1939–1951, 2008. doi: https://doi.org/10.1002/polb.21529
B. Dong, C. Liu, Y. Lu, and Y. Wu, “Synergistic effects of carbon nanotubes and carbon black on
the fracture and fatigue resistance of natural rubber composites,” Journal of Applied Polymer Science, vol. 132, no. 25, 2015. doi: https://doi.org/10.1002/app.42075
H. Ismail, A. Ramly, and N. Othman, “The effect of carbon black/multiwall carbon nanotube hybrid fillers on the properties of natural rubber nanocomposites,” Polymer-Plastics Technology and Engineering, vol. 50, no. 7, pp. 660–666, 2011. doi: https://doi.org/10.1080/03602559.2010.551380
M. A. M. Chusururi, D. Ravelia, W. S. Brahmanu, F. N. Ahmadi, L. Noerochiem, and B. A. Kurniawan, “Comparison of corrosion inhibitor performance based on green corrosion inhibitor of extract leaf tobacco and commercial imidazoline inhibitor in a sweet environment at carbon steel AISI 1045 in NaCl 3.5% solution,” Journal of Applied and Physical Sciences, vol. 4, no. 1, pp. 14–25, 2018. doi:https://doi.org/10.20474/japs-4.1.3
R. Narakhetudomsak and T. Tondee, “Rapid chemical oxygen demand analysis by total organic carbon correlation,” International Journal of Applied and Physical Sciences, vol. 2, no. 1, pp. 1–6, 2016. doi: https://doi.org/10.20469/ijaps.2.50001-1
K. Rassiah, M. M. H. M. Ahmad, and A. Ali, “Effect on mechanical properties of rice husk/e-glass polypropylene hybrid composites using Sodium Hydroxide (NaOH),” Journal of Advances in Technology and Engineering Research, vol. 2, no. pp. 105–112, 2016. doi: https://doi.org/10.20474/jater-2.4.1
C. G. Robertson and C. Roland, “Glass transition and interfacial segmental dynamics in polymerparticle composites,” Rubber Chemistry and Technology, vol. 81, no. 3, pp. 506–522, 2008. doi:https://doi.org/10.5254/1.3548217
V. Rostiashvili, V. Irzhak, and B. Rozenberg, Steklovanie polimerov (Glass Transition in Polymers). Leningrad, Russia: Himiya, 1987.
Y. S. Lipatov, Fiziko-khimicheskiye osnovy napolneniya polimerov [Physico-chemical basis of filled polymers]. Moskva, Russia: Khimiya, 1991.
C. G. Robertson, C. Lin, M. Rackaitis, and C. Roland, “Influence of particle size and polymerfiller coupling on viscoelastic glass transition of particle-reinforced polymers,” Macromolecules, vol. 41, no. 7, pp. 2727–2731, 2008. doi: https://doi.org/10.1021/ma7022364
M. Huang, L. B. Tunnicliffe, A. G. Thomas, and J. J. Busfield, “The glass transition, segmental relaxations and viscoelastic behaviour of particulate-reinforced natural rubber,” European Polymer Journal, vol. 67, pp. 232–241, 2015. doi:https://doi.org/10.1016/j.eurpolymj.2015.03.024
S. Musto, V. Barbera, V. R. Cipolletti, A. Citterio, and M. S. Galimberti, “Master curves for the sulphur assisted crosslinking reaction of natural rubber in the presence of nano-and nano-structured sp2 carbon allotropes,” eXPRESS Polymer Letters, vol. 11, no. 6, pp. 435–448, 2017. doi: https://doi.org/10.3144/expresspolymlett.2017.42
M.-J. Wang, “The role of filler networking in dynamic properties of filled rubber,” Rubber chemistry and technology, vol. 72, no. 2, pp. 430–448, 1999. doi: https://doi.org/10.5254/1.3538812