
International Journal of Technology and Engineering Studies
volume 4 issue 5 pp. 197-202 doi: https://dx.doi.org/10.20469/ijtes.4.10004-5

Issues and Challenges of Adopting Agile Methodologies in Software
Engineering Courses

Boris Milašinović∗
Faculty of Electrical Engineering and

Computing, University of Zagreb,
Zagreb, Croatia

Krešimir Fertalj
Faculty of Electrical Engineering and

Computing, University of Zagreb,
Zagreb, Croatia

Abstract: This paper enumerates some of the possible pitfalls to the successful introduction of agile methodologies in
software engineering education. Scrum is the most dominant, or at least the most trending agile methodology. The
literature review has been done to find possible solutions to avoid the issues concerning adioption of agile methodologies.
This paper elicits common problems, mentioned in literature, expanded with some issues, opinions, and suggestions
from the authors’ perspective. The findings highlight that the human factor can accelerate learning. However, it can also
impede the acquisition of agile values due to lack of knowledge, cultural issues, resistance to change, wrong mindset,
and collaboration. Furthermore, some aspects usually do not occur in the real world. Students are usually distracted by
some other activities, do not have a typical workplace, causing additional effort when “meeting” in a distributed context.
By comparing personal experiences with the literature review, it can be concluded that existing solutions and methods
for adopting agile methodologies in software engineering education cannot be cloned as the success rate significantly
depends on staff availability and personal and cultural factors. Based on these findings, some valuable suggestions for
addressing these issues are enlisted. Educators and educational policy makers could use the findings to enhance the
learning and development of engineering students.

Keywords: Agile, Scrum, software engineering, education

Received: 13 June 2018; Accepted: 2 August 2018; Published: 20 October 2018

I. INTRODUCTION
Happy “XP/Scrum/Agile in education” papers are

all alike; every unhappy paper is unhappy in its own
way [1]. A paraphrase of Tolstoy’s first sentence from
Anna Karenina could accurately describe the (not only
scientific) papers deal with use of agile methodologies
in education. Although all papers have unique features
to qualify them as novel, basically all of them have the
key aspects successfully implemented, and they conclude
with the questionnaire or analysis. This usually shows
that students are satisfied with the new approach, and
that they acquired the new knowledge required by the
software companies.

Anna Karenina principle states that if there is a defi-
ciency in any of key aspects, the family (in general the

whole process) will be unhappy. Paraphrasing Tolstoy’s
sentence is not novel at all, and Anna Karenina principle
was used to explain numerous things in various areas, and
agile methodology is not an exception [2]. However, it
briefly describes problems adopting agile methodologies
practically in software engineering education.

This paper tries to enumerate some of the possible
pitfalls to successful introduction of agile methodologies
in software engineering education, in which Scrum is
the most dominant, or at least the most trending agile
methodology. Motivation for adopting agile methods in
education of software engineering is given in the sec-
ond section, followed by the review of literature to find
the most appropriate place in the curriculum to teach
and practice agile methodology. The forth and the fifth

∗Correspondence concerning this article should be addressed to Boris Milašinović, Faculty of Electrical Engineering and Computing,
University of Zagreb, Zagreb, Croatia. E-mail: boris.milasinovic@fer.hr
c© 2018 The Author(s). Published by KKG Publications. This is an Open Access article distributed under a Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.

http://crossmark.crossref.org/dialog/?doi=10.20469/ijtes.4.10003-5&domain=pdf
https://dx.doi.org/10.20469/ijtes.4.10004-5
boris.milasinovic@fer.hr
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Milašinović, B. et al. / International Journal of Technology and Engineering Studies 4(5) 2018 198

section deals with students’ preparation for the new pro-
cess and their motivation and attitude. The sixth section
deals with problem of role assignments when adopting
an agile methodology in teaching process. The seventh
section gives an author’s context and some personal ex-
periences. The paper concludes with somehow contrary
opinions regarding attempts and methods to introduce
agile methodology in educational process.

II. NEED FOR CHANGE OF REQUIRED
COMPETENCES

Traditional teaching based on theoretical fundamen-
tals supported by hypothetical case studies is not suitable
any more in order to produce students for a competitive
and changing IT market. Practical experiences in various
real-life projects would give students various benefits,
e.g., a portfolio to show to potential employers, and also
a distinct advantage over those who lack such experi-
ence [3]. Involving students into real-world projects and
real teamwork environment is of the great importance
in software engineering education that is unfortunately
sometimes ignored in academic environments. One of
the main reasons is complexity of those problems that
have to be reduced and partitioned in order to be feasi-
ble in academic settings taking care of a size of student
team(s), teaching schedule and teaching workload. Edu-
cational institutions are often not allowed to change their
curriculum due to various accreditation procedures, or
in extreme cases due to absence of interest or the knowl-
edge to change [4]. A workaround to introducing new
knowledge and new practices is to adapt current courses
by introducing real-life problems [5]. However, topics
and connections with real-life problems are not the only
issues that must be dealt with. As Král and Žemlička
summarized in their paper [6], the problems frequently
occur in the planning and managing phase rather than in
the developing phase, or as a failure of development re-
sponsibilities. Consequently, it is obvious that some other
skills beyond programming and technical excellence is
needed [7] and those soft skills are not always easy to
learn or acquire [8].

III. PLACE TO INTRODUCE AGILE
METHODOLOGY

The rise of agile methodologies, with Extreme pro-
gramming (XP) and Scrum as the two most dominant
examples, stressed previously mentioned problems and
triggered educational changes especially in Software engi-
neering courses. Except an example of introducing some
of XP concepts into iterative Unified process and thus
creating a hybrid approach [8], most of the literature de-

scribes adoption of agile methodology (mostly Scrum in
later papers). In their work 9 made a survey of papers de-
scribing introduction of agile methods in education from
2003 to 2008, in which they enumerated various issues
e.g. lack of training, resistance to changes, problematic
teamwork, administrative effort, etc. A similar study, but
focused only on Scrum was performed by [10] in 2015.
Both studies suggest a capstone project [11] as a place
for teaching agile methodology to students and also give
a possible course schedule for it [9, 12]. Additionally,
some other authors suggest a capstone project as a proper
place for teaching agile methodologies. However, there is
no unique view on how long it would be and how would
it be organized. For example, Scharff et al. organize an
annual development project with participants from all the
world and provides recommendations how to integrate
Scrum in those projects [13]. Murphy et al. [14] propose
two course sequences, which can cause organizational
problems as described by Burris in his article [15]. As
the agile competence pyramid consists of engineering
practices, management practices and agile values, Kropp
and Meier [16] suggest dividing a course into two parts.
The first one should cover engineering practices by XP,
and the second one working with Scrum. However, ap-
propriate ecosystem must be created to avoid teaching
agile values without being experienced in practice [17].

IV. STUDENT PREPARATION
Giving an answer to the question which methodology

to use is not a simple task. Martin et al. [7] organize the
so called Agile debates to enable their students to come to
the conclusion that there is no silver bullet solution. Thus,
the choice of Scrum is not a solution to the problem by
itself. It is just good tool to help with the development
for which it must be well prepared. Although Scrum as a
concept is relatively easy to understand, its adoption and
correct usage can be very hard. Studies have shown that
even practicing software engineering professionals with
university degree or industry experience could not easily
adapt to agile methods in a very short intensive time and
thus must prepare four weeks in advance [7]. On the other
hand, Burris suggest that soft skills can be taught in an-
ticipation of potential problems [15]. Potineni et al [18]
suggest that students should first observe existing teams
for a week and only then start to gather requirements.
Mahnič [12] uses initial zero Sprint as an introduction to
Scrum and Freitas Santana et al. [19] spend at least two
sprints for students to adapt to Scrum. May et al. [20]
suggest a game with a ball in which students must esti-
mate how much time will elapse until all team members
exchange a ball under certain rules; showing that in each



199 Milašinović, B. et al. / International Journal of Technology and Engineering Studies 4(5) 2018

iteration estimation gets better, which would result in bet-
ter estimation of development duration. Mahnič in [10]
had also reviewed some other approaches using games
(e.g. planning poker, LEGO bricks) as an alternative to
practical work in case there is not enough time or skills
for development.

V. STUDENTS MOTIVATION, ATTITUDE AND
PROBLEMS

Perception about change process can be diverse [21],
e.g. students could be very enthusiastic about extreme pro-
gramming practices [22], and sometimes feel that things
like project management are not important, or are applied
just for lecturer’s sake [17], or tend to follow waterfall-
like plan rather that respond to change [23]. Mahnic states
that better students are more aware of the benefits [10].

Human factor can accelerate, but it can also impede
the acquisition of agile values in companies due to lack of
knowledge, cultural issues, resistance to change, wrong
mind set and lack collaboration [21]. In the same way
this human factor can affect agile adoption in teaching
process. Strong temperament and lack of interpersonal
skills can undermine team effort [24]. Sometimes even
excellent coders can cause problems by underestimating
the importance of soft skills, or by having a bad attitude
to technically less proficient users. Consequently they do
not adapt well to the team [6].

Furthermore, there are some aspects that usually do
not occur in real-world. Students are usually distracted
with some other activities [4], do not have a common
working place causing additional effort when “meeting”
in distributed context [23]. This may even lead to misun-
derstanding, or even mistrust between project members
and staff [25]. Thus Olszewska et al. [26] organized
“daily” meetings every third day, and Freitas Santana et
al. [19] organized meetings every fifteen days (but their
project was planned with two years duration in mind).
However, a student is more likely to quit the project (fail
the course), perhaps more often than an employee resigns.
Due to afore mentioned factors and the possibility of sick-
ness, Olszewska et al. [26] assigns double responsibility
to tasks. Another significant aspect is lack of resources
combined with large class, especially tutors who can pre-
vent successful transfer of knowledge [25].

Additionally, there is a problem of motivation. Stu-
dents’ only “salary” is their course grade, thus many
students are only interested in grades and deadlines than
the software quality. In order to change this attitude Mur-
phy [14] suggest that in the second course of two courses
sequence a student must continue working on other work,
thus raising awareness of importance of a good code.

As in any team work, another significant problem is
grading. Individual work must be recognized and valued
appropriately [5]. However, working in an Agile team can
mask individual contribution and it needs another type
of grading framework [27]. Another approach is to user
peer review to decide what percentage of overall score is
owed to each student (Burris in [15]).

VI. ROLE DISTRIBUTION PROBLEM
One important problem is the distribution of roles,

the most problematic being who should be Scrum master.
As Mahnič has shown in his review [10] there are two
different opinions about who should that be the teacher
or a student. Advocates of students as Scrum masters
state that students are able to work independently once
they adopt Scrum, and that otherwise would feel that they
are micro managed and not able to self-organize [28].
Some force rotating Scrum master role with a professor
that teaches/trains them Scrum [17, 23]. Somewhere in
the middle are those who use research assistants [29] or
students that previously passed the course [14] as project
managers or coordinators. Additional roles are not un-
usual, as many include Agile coach role taken by lecturer
[17] that is usually not a member of the team [23]. A
similar dilemma is present for the Product owner and is
usually solved in the same manner as Scrum master role
problem. Those who oppose students as Scrum master or
Product owner usually state that students do not have a
good overview of domain problem, and have a tendency
to discard difficult problems [14] or that they could af-
fect quality of user stories [10]. However, the lecturer
should have experience in order to guide students, letting
them learn from their mistakes, rather than showing them
the solution to the problem [23]. Moreover, it would be
beneficial if the lecturer owns a Scrum certificate [20].

VII. AUTHORS’ CONTEXT
The authors have successfully emulated real-word

projects in the past ten years at the 3rd year of bache-
lor study in the course Development of Software. In the
course students have to extract requirements from an in-
terview in which a real user is emulated and develop an
application implementing user’s requirements [5]. By
the time students enrol on the courses they should pass
(among other courses) introductory programming course,
Object oriented programming, Algorithms and Data Struc-
tures, Databases, indicating that they should be at least
formally capable of doing advanced things. Hence, this
makes the course a good candidate for addition of ag-
ile elements, although teaching agile methodology is not
mandatory or described in outcomes of the courses.



Milašinović, B. et al. / International Journal of Technology and Engineering Studies 4(5) 2018 200

However, experiences with attempts to introduce el-
ements of agile methodologies were somehow contrary
to results shown in reviewed scientific papers. Maybe
one of the reason was a too optimistic answer to the first
question from [30]: “Is the student ready for this level of
independence?”. In none of the previous courses had stu-
dents learned how to program mobile, web or standalone
application. This lead to the paradox similar to [15] that
they have to learn how to manage development process,
but they do not have the development skills. Neither is
something novel. For instance [28] requires that students
use programming language that has not been officially
used in previous courses, what perhaps looks like a too
harsh measure and definitely does not help in estimating
the duration of work.

The first attempt of introducing agile elements in the
course was to create an assignment to enter all user sto-
ries. There were several pitfalls with this approach. The
first one was that all groups did the same project and only
their implementation was different, thus making user sto-
ries ideal for replication among groups. The second one
was that the progress of development was heavily con-
strained by teaching development process (teach them
how to develop) and that choosing what to do in which
iteration/sprint was not the students’ choice but the side
effect of the learning progress. Perhaps because of this,
students were subdividing user stories in tasks after the
development had been done, just to earn points for the fi-
nal grade and not to help them in whole process. Contrary
to approach in [29], where the Scrum master and Product
owner should not do programming tasks, the intention
was that each student does every stage of a software life-
cycle so everyone felt that entering stories and tasks were
unnecessary additions to the development process, as was
seen in the complains in course feedback questionnaire.
The other remarks in questionnaire was similar to other
problems mentioned in literature: project quitting, delays
due to sicknesses of team members, distraction with other
obligations, role problems, meetings problem etc. The
third problem was lack of staff to fulfill of tasks: being
teacher, product owner and agile coach at the same time.

VIII. CONCLUSION AND
RECOMMENDATIONS

By comparing personal experiences with the litera-
ture review it can be concluded that others’ solutions and
methods for adopting agile methodologies in software en-
gineering education cannot be cloned as the success rate
for significantly depends on staff availability and because
students attitude varies by country or part of the world.
Even more, there is no unique opinion on many aspects,

e.g. how to distribute roles.
There are some paradoxes and inevitable problems

with the fact that students are not comparable to regular
employees and have different attitude and approach to
work. Also, teaching large number of students all aspects
of a software lifecycle by emulating teamwork cannot
be equal to real life situation, as in real life teams roles
are usually strictly divided, and the process cannot be
emulated completely.

Lastly, the general dilemma refers to what is more
useful for the bachelor student to teach them about
methodologies although they are not experienced in de-
velopment, or to teach them software development (if
possible on real life projects) and wait for more suitable
courses in master study where they should learn more
about methodology. The problem of introducing some
things too early is that students are not aware of the bene-
fits as they did not experienced problems that are solved
with the approach. However, the introduction of agile
elements is inevitable, but instead of using a particular
methodology authors suggest to use some kind of hybrid
approach taking suitable elements (e.g., weekly meetings,
iterative releases, user stories etc.) that best fits own
environment, avoiding previously mentioned commonly
known mistakes.

Declaration of Conflicting Interests
It is an original work of authors who declare that there

are no conflicts of interest.

REFERENCES
[1] B. Milašinović, “An overview of key aspects in

adopting Scrum in teaching process,” in Workshop
of Cooperation at Academic Informatics Education
across Balkan Countries and Beyond, Primošten,
Croatia, 2018.

[2] M. Breyter, “Practical guide to scaling agile,” 2015.
[Online]. Available: https://bit.ly/2VhpAS6

[3] A. Orr, “Learn by doing: Agile project based
learning in the software development classroom,”
2015. [Online]. Available: https://bit.ly/2Su13az

[4] U. K. Kudikyala and U. N. Dulhare, “Using Scrum
and Wikis to manage student major projects,” in
IEEE 3rd International Conference on MOOCs, In-
novation and Technology in Education (MITE), Am-
ritsar, India, 2015. doi: https://doi.org/10.1109/mite.
2015.7375279

[5] K. Fertalj, B. Milašinović, and I. N. Kosović, “Prob-
lems and experiences with student projects based
on real-world problems: A case study,” Technics

https://bit.ly/2VhpAS6
https://bit.ly/2Su13az
https://doi.org/10.1109/mite.2015.7375279
https://doi.org/10.1109/mite.2015.7375279


201 Milašinović, B. et al. / International Journal of Technology and Engineering Studies 4(5) 2018

Technologies Education Management, vol. 8, no. 1,
pp. 176–186, 2013.

[6] J. Král and M. Žemlička, “Experience with real-
life students’ projects,” in Federated Conference on
Computer Science and Information Systems, War-
saw, Poland, 2014. doi: https://doi.org/10.15439/
2014f257 pp. 827–833.

[7] A. Martin, C. Anslow, and D. Johnson, “Teach-
ing agile methods to software engineering profes-
sionals: 10 years, 1000 release plans,” in Interna-
tional Conference on Agile Software Development,
Cologne, Germany, 2017. doi: https://doi.org/10.
1007/978-3-319-57633-6_10

[8] M. I. Alfonso and A. Botia, “An iterative and agile
process model for teaching software engineering,”
in 18th Conference on Software Engineering Edu-
cation & Training (CSEET), Ottawa, Canada, 2005.
doi: https://doi.org/10.1109/cseet.2005.5

[9] D. F. Rico and H. H. Sayani, “Use of agile methods
in software engineering education,” in Agile Con-
ference, Chicago, IL, 2009. doi: https://doi.org/10.
1109/agile.2009.13

[10] V. Mahnič, “Scrum in software engineering courses:
an outline of the literature,” Global Journal of Engi-
neering Education, vol. 17, no. 2, pp. 77–83, 2015.

[11] Great Schools Partnership, “Capstone project defi-
nition - The glossary of education reform,” 2016.
[Online]. Available: https://bit.ly/2T5tL6U

[12] V. Mahnic, “A capstone course on agile software
development using scrum,” IEEE Transactions on
Education, vol. 55, no. 1, pp. 99–106, 2012. doi:
https://doi.org/10.1109/te.2011.2142311

[13] C. Scharff, S. Heng, and V. Kulkarni, “On the diffi-
culties for students to adhere to scrum on global soft-
ware development projects: Preliminary results,” in
Proceedings of the Second International Workshop
on Collaborative Teaching of Globally Distributed
Software Development, Piscataway, NJ, 2012. doi:
https://doi.org/10.1109/ctgdsd.2012.6226946

[14] C. Murphy, S. Sheth, and S. Morton, “A two-course
sequence of real projects for real customers.” in
Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, Seat-
tle, WA: ACM, 2017. doi: https://doi.org/10.1145/
3017680.3017742 pp. 417–422.

[15] K. A. Alshare, D. Sanders, E. Burris, and S. Sigman,
“How do we manage student projects?: Panel discus-
sion,” Journal of Computing Sciences in Colleges,
vol. 22, no. 4, pp. 29–31, 2007.

[16] M. Kropp and A. Meier, “Teaching agile software
development at university level: Values, manage-

ment, and craftsmanship,” in 26th International
Conference on Software Engineering Education and
Training (CSEE&T), San Francisco, CA, 2013. doi:
https://doi.org/10.1109/cseet.2013.6595249

[17] A. Meier, M. Kropp, and G. Perellano, “Experience
report of teaching agile collaboration and values:
agile software development in large student teams,”
in IEEE 29th International Conference on Software
Engineering Education and Training (CSEET), Dal-
las, Texas, 2016. doi: https://doi.org/10.1109/cseet.
2016.30

[18] S. Potineni, S. K. Bansal, and A. Amresh, “Scrum-
Tutor: A web-based interactive tutorial for Scrum
Software development,” in International Conference
on Advances in Computing, Communications and
Informatics (ICACCI), Mysore, India, 2013. doi:
https://doi.org/10.1109/icacci.2013.6637469

[19] L. F. Santana, L. F. C. d. Santos, T. S. C. Silva, V. B.
Villar, F. G. Rocha, and V. Gonçalves, “Scrum as a
platform to manage students in projects of techno-
logical development and scientific initiation: a study
case realized at UNIT/SE,” Journal of Information
Systems Engineering & Management, vol. 2, no. 2,
pp. 1–7, 2017. doi: https://doi.org/10.20897/jisem.
201707

[20] J. May, J. York, and D. Lending, “Teaching tip: Play
ball: Bringing scrum into the classroom,” Journal
of Information Systems Education, vol. 27, no. 2, pp.
87–92, 2016.

[21] T. J. Gandomani, H. Zulzalil, A. A. Ghani, A. B. M.
Sultan, and K. Y. Sharif, “How human aspects im-
press agile software development transition and
adoption,” International Journal of Software En-
gineering and its Applications, vol. 8, no. 1, pp.
129–148, 2014. doi: https://doi.org/10.14257/ijseia.
2014.8.1.12

[22] G. Melnik and F. Maurer, “Perceptions of agile prac-
tices: A student survey,” in Conference on Extreme
Programming and Agile Methods. Springer, 2002.
doi: https://doi.org/10.1007/3-540-45672-4_27 pp.
241–250.

[23] G. Rodríguez, Á. Soria, and M. Campo, “Measur-
ing the impact of agile coaching on students perfor-
mance,” IEEE Transactions on Education, vol. 59,
no. 3, pp. 202–209, 2016.

[24] M. Villavicencio, E. Narváez, E. Izquierdo, and
J. Pincay, “Learning scrum by doing real-life
projects,” in IEEE Global Engineering Education
Conference (EDUCON), Athens, Greece, 2017.

[25] G. Rodriguez, Á. Soria, and M. Campo, “Virtual
scrum: A teaching aid to introduce undergraduate

https://doi.org/10.15439/2014f257
https://doi.org/10.15439/2014f257
https://doi.org/10.1007/978-3-319-57633-6_10
https://doi.org/10.1007/978-3-319-57633-6_10
https://doi.org/10.1109/cseet.2005.5
https://doi.org/10.1109/agile.2009.13
https://doi.org/10.1109/agile.2009.13
https://bit.ly/2T5tL6U
https://doi.org/10.1109/te.2011.2142311
https://doi.org/10.1109/ctgdsd.2012.6226946
https://doi.org/10.1145/3017680.3017742
https://doi.org/10.1145/3017680.3017742
https://doi.org/10.1109/cseet.2013.6595249
https://doi.org/10.1109/cseet.2016.30
https://doi.org/10.1109/cseet.2016.30
https://doi.org/10.1109/icacci.2013.6637469
https://doi.org/10.20897/jisem.201707
https://doi.org/10.20897/jisem.201707
https://doi.org/10.14257/ijseia.2014.8.1.12
https://doi.org/10.14257/ijseia.2014.8.1.12
https://doi.org/10.1007/3-540-45672-4_27


Milašinović, B. et al. / International Journal of Technology and Engineering Studies 4(5) 2018 202

software engineering students to scrum,” Computer
Applications in Engineering Education, vol. 23,
no. 1, pp. 147–156, 2015. doi: https://doi.org/10.
1002/cae.21588

[26] M. Olszewska, S. Ostroumov, and M. Olszewski,
“To agile or not to agile students (with a twist): Ex-
perience report from a student project course.” in
2017 43rd Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), Vienna,
Austria: IEEE, 2017.

[27] R. F. Gamble and M. L. Hale, “Assessing individ-
ual performance in agile undergraduate software
engineering teams,” in IEEE Frontiers in Educa-
tion Conference (FIE), Oklahoma, OK, 2013. doi:
https://doi.org/10.1109/fie.2013.6685123

[28] R. T. Hans, “Work in progress: The impact of the
student scrum master on quality and delivery time
on students’ projects,” in 2017 International Con-
ference on Learning and Teaching in Computing
and Engineering (LaTICE), Hong Kong, 2017. doi:
https://doi.org/10.1109/latice.2017.22

[29] A. Scharf and A. Koch, “Scrum in a software engi-
neering course: An in-depth praxis report,” in 26th
International Conference on Software Engineering
Education and Training (CSEE&T), San Francisco,
CA, 2013.

[30] Carnegie Mellon University, “Supervising indepen-
dent student projects,” 2011. [Online]. Available:
https://bit.ly/2BQuEWb

https://doi.org/10.1002/cae.21588
https://doi.org/10.1002/cae.21588
https://doi.org/10.1109/fie.2013.6685123
https://doi.org/10.1109/latice.2017.22
https://bit.ly/2BQuEWb

	Introduction
	NEED FOR CHANGE OF REQUIRED COMPETENCES
	PLACE TO INTRODUCE AGILE METHODOLOGY
	STUDENT PREPARATION
	STUDENTS MOTIVATION, ATTITUDE AND PROBLEMS
	ROLE DISTRIBUTION PROBLEM
	AUTHORS' CONTEXT
	conclusion and recommendations

